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PREFACE

This book is intended to be a continuation of the volume edited — three years ago
— under the same title by Dr Mieszko Tatasiewicz. One of the main aims of publishing
it is to present some results obtained in the title areas in the Institute of Philosophy of
Warsaw University.

A novelty of this volume consists in the fact that we inserted in it some inedita. The
first of these is Jan Lukasiewicz’s ample text, “Theory of Deduction”; the second is
Zdzistaw Augustynek’s short paper, “About Ontology”.

The reason for publishing the first text is more than obvious. Lukasiewicz is the
founder of the Warsaw School of Logic, a branch of the Lvov—Warsaw School, and
all the contributors to this volume duly appreciate the great tradition of Kazimierz
Twardowski’s school.

“Theory of Deduction” is probably not the original title of Lukasiewicz’s text:
its typescript begins only with the “Introduction”. What is more, this text was not
finished by the author, or — precisely speaking — we have at our disposal only the
part of it published in this volume. Eukasiewicz started to write this text in 1950.
Some references to his project are contained in his correspondence with Rev. J6zef
M. Bochenski." We enclose here some relevant excerpts from this correspondence
(translated into English):

29.03.1946. When we acquire our own flat [in Dublin] — up to now we've been living in a boarding
house — I shall start to write Elements of Logistics by order of the Parisian publishing firm Les Presses
Universitaires (formerly: Lacan).!

4.09.1946. As concerns my handbook, I intend to put into it only ELements of mathematical logic,
i.e., apart from the introduction (1): propositional calculus (lI) — the proof of completeness and non—
contradiction of this calculus (III) — the theory of quantifiers (IV) — the theory of predicates with the
theory of identity (V) — Aristotle’s syllogistics (VI) — and the application of the theory of natural
numbers (VII). I do not consider the calculus of classes and relations because the theory of predicates
replaces, in my opinion, both these calculi; besides, I do not like the theory of classes and the algebra of
logic because I do not accept empty classes and I think that Lesniewski’s ontology is a much more perfect
theory. I shall aspire to as great simplicity and clarity in presentation as possible — I am not satisfied
with Quine (Math[ematical] Logic) — Tarski is more satisfying, but he gives too few theoretical comments.
When [ shall finish all these projects — I do not know. Up to now I have no conditions for free and
intensive work. Writing will take at least one year.?

19.08.1950. Now I am starting to write a handbook of symbolic logic based on my lectures. [ have not
only lectures in the Royal Irish Academy twice a week (two full hours), but I have also delivered the cycle
of eight lectures at Queen’s Uiniversity in Belfast, in February and March of this year.!

We publish Lukasiewicz’s typescript with no editorial interventions (with
the exception of a few evident corrections and interpolations, always marked by
brackets).

The reason for publishing Augustynek’s paper (found in his scholar heritage,
donated to one of us) is also obvious — at least for the editors. Firstly, almost all

' Jan Lukasiewicz, “From the correpondence with ].M. Bocheriski”. [In:] Logika i metafizyka [Logic and
Meaphysics|. Miscellanea edited by ].J. Jadacki. Warszawa 1998, WFiS UW, p. 513-529.

2 Ibidem, p. 515.

3 Ibidemn, p. 519.

3 Ibidem, p. 525.



of us take ourselves for Professor Augustynek’s pupils. Secondly, many years ago,
Professor Augustynek inaugurated the very fruitful scholarly cooperation between
two departments of the Institute of Philosophy of Warsaw University: his Department
of the Philosophy of Science and the Department of Logical Semiotics.

This book is one of the fruits of this cooperation.

* & %

We are very grateful to the Director of the Archives of Warsaw University for his
kind permission to publish in this volume Jan Lukasiewicz’s “Theory of Deduction”.

Anna Brozek
Jacek Juliusz Jadacki
Witold Strawinski



JAN Lukasiewicz

THEORY OF DEDUCTION

[1] Introduction

1. Logic of terms and logic of propositions

Symbolic logic, like mathematics, is not a single system, but a set of several systems
some of them differing from each other more then arithmetic from geometry. The main
parts of symbolic logic are logic of terms and logic of propositions. I shall explain their
difference on a simple example.

There exists in the traditional logic a law of the form

(1.1) Every aisa,
called the law of identity. There exists another law of identity, known already to the
Stoics, of the form:

(1.2) If p, then p.

Let us describe the difference between these two laws of identity.

They differ first by the linguistic expressions “every-is” and “if-then”. As we shall
see later, both these expressions are proposition—forming functors of two arguments
which are in our examples identical: in (1.1) 2 and 4, in (1.2) p and p. I call both
expressions proposition—forming functors, because from their combination with the
arguments results in both cases a proposition. A second and more important difference
between these laws lies in their arguments: both arguments, @ and p, are variables;
that means, they have no determinate meaning, but are connected with a range of
values which can be substituted instead of them. The values of 2 are universal terms,
as “man” or “philosopher”. By substituting in (1.1) instead of a the value “man”, we
get the proposition:

(1.3) Every man is a man,

The values of p are propositions, as “today is Tuesday” or “3 is less than 5”. By
substituting in (1.2) instead of p the value “today is Tuesday”, we get the proposition:

(1.4) If today is Tuesday, then today is Tuesday.

Terms and propositions are two different semantical categories. You can significantly
replace a proposition by another proposition, or a term by another term, but you
cannot significantly put a proposition instead of a term, or vice—versa. For instance,
because p denotes a proposition, and the law of identity (1.1) is a proposition, you can
significantly substitute instead of p the proposition “every a is a”, getting thus a new
proposition:

(1.5) If every a is a, then every aisa.

But you cannot substitute instead of the term-variable a the proposition “if p, then p”,
since you would get a nonsens:

(1.6) Every if p, then p is if p, then p.

Logical expressions containing term-variables belong to the logic of terms, expressions
containing only propositional variables belong to the logic of propositions. The law
of identity (1.1) belongs to the logic of terms, the law of identity (1.2) to the logic of
propositions. The difference between these two laws, and consequently the difference
between the logic of terms and the logic of propositions, is as great as the semantical



8 Jan tukasiewicz

difference between terms and propositions, and therefore a fundamental one. This
difference is greater than between arithmetic and geometry, because in the latter
case we have only different kinds of terms, arithmetical terms denoting numbers,
geometrical - spatial entities.

2. Some historical remarks

The most fundamental logical system is not the logic of terms, but the logic of
propositions. Historically, however, the logic of terms arose earlier than the logic of
propositions. The earliest logical system is the syllogistic of Aristotle (384-322 B.C.),
and this system belongs to the logic of terms.

All Aristotelian syllogisms are propositions beginning with “if”, we call today
such propositions “implications”, and consist of two premisses and the conclusion.
The premisses are connected by means of the conjunction “and”. The most famous
syllogism is the following called in the Middle Ages Barbara:

Ifeveryaisb,
(21) andeverybisc,
then every a is c.
The letters g, b and ¢ are term—variables, and the range of their values are universal
terms, i.e. terms that may be predicated of more than one subject. Take for instance
for a — “philosopher”, for b — “man”, and for ¢ — “mortal”: you get a syllogism in
concrete terms:
If every philosopher is a man,
(2.2) and every man is mortal,
then every philosopher is mortal.

Aristotle has carefully studied all syllogistic forms and has constructed a system
which was dominant through many centuries being till today the kernel of the so
called formal logic. He has known only a few laws of propositional logic, not being
aware that these laws belong to a logical system more fundamental than his own,
and are indispensable for proving some syllogistic moods by means of syllogisms
assumed by him axiomatically. He uses them in his proofs intuitively. The discovery
of the propositional logic was reserved for the Stoics and their prominent logician
Chrysippus (Il century B.C.).

The logic of the Stoics is a logic of propositions. The most known Stoic syllogism,
called later modus ponens, reads:

If a, then B.
(2.3) Buta.
Therefore .
The letters o and f are propositional variables. Put for « - “today is Tuesday”, and for
B — “tomorrow is Wednesday”; you get a syllogism in concrete terms:
If today is Tuesday, then tomorrow is Wednesday.
(2.4) Buttoday is Tuesday.
Therefore tomorrow is Wednesday.

The Stoics have found a lot of such arguments all belonging to the logic of
propositions. These arguments were known to logicians of the Middle Ages, and were
even developed by them in their treatises De consequentiis, but were always treated as an
appendix to the Aristotelian syllogistic. The modern system of the logic of propositions
has been created only in 1879 by the great German logician Gottlob Frege in his paper
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Begriffsschrift. Another outstanding logician of the XIX century, the American Charles
Sanders Peirce, has greatly contributed to this logic by his discovery of logical matrices
(1885). The authors of the Principia mathematica, Alfred North Whitehead and Bertrand
Russell, have later put this system of logic on the top of all mathematics under the title:
Theory of Deduction (1910).

3. Theses and rules of inference

The comparison of the Aristotelian syllogism (2.2) with the Stoic syllogism (2.3)
is in another respect very instructive. The Aristotelian syllogism is an implication,
therefore a proposition, and a true one. True propositions of a deductive system I shall
call theses. The Stoic syllogism is not a proposition; it consists of three propositions, (1)
if o, then g, (1) o, and (III) B, which are not unified so as to form one single proposition.
The two premisses, (I) and (II), are stated without a conjunction, and the connexion
of these loose premisses with the conclusion (IH) by means of “therefore” does not
give a new compound proposition. The Stoic syllogism (2.3) is not a proposition, it is
an inference. Inferences are always recognizable by the word “therefore”. Inferences,
not being propositions, are neither true nor false, as truth and falsity belong only to
propositions. They may be valid or not. The Stoic syllogism (2.3) is a valid inference,
and 8o is (2.4). The syllogism (2.4) is an inference in concrete terms, the syllogism (2.3)
I call a rule of inference, because it is stated in variables. The sense of this rule may be
explained thus: When you put such values for o and f that the premisses: if ¢, then f,
and o are true, then you must accept as true the conclusion .

Every system of logic consists of theses and rules of inference. The proposition
“every a is a” is a thesis of the Aristotelian syllogistic, the proposition “if p, then p” a
thesis of the logic of propositions. The Stoic syllogism (2.3) is a rule of inference. Rules
of inference are indispensable in any logical system. The chief purpose of logic is to
derive new true propositions from already established truths. This can be only done by
transforming given true propositions into new ones according to some very carefully
formulated rules that lead from truth to truth. There is a tendency to reduce the number
of the rules of inference to a minimum, by replacing them by theses. But some rules
of inference must always remain, because otherwise we could not go forward. One of
the most important rules of inference accepted in modern formal logic is just the Stoic
syllogism modus ponens. It is called today the rule of detachment, because it enables
us to detach and accept as true the consequent of an implication, provided the whole
implication and its antecedent are true.

4. Functors and arguments

In order to explain what is meant by the words “functor” and “argument” let us
consider some examples borrowed from elementary mathematics and logic.

A sum of two numbers, for instance;

(41)3 +5,
is denoted by three symbols, 3, +, 5, and forms a whole which denotes also a number.
The symbol which makes of the above expression a meaningful whole is the sign of
addition, +. I call it the functor, and the other two symbols, 3 and 5, its arguments.
Because both arguments as well as their sum denote numbers, I say that + is a number-
forming functor of two numerical arguments. Let us now consider the expression:

(4.2) 3 <5.
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This expression consists again of three symbols, 3, <, 5, but the whole formed by
them does not denote a number; it is a proposition. The symbol which makes of the
expression (4.2) a meaningful whole is the sign of the relation “less than”, <. This
sign is the functor, and 3 and 5 are its arguments. As the arguments denote numbers,
and the whole is a proposition, 1 say that < is a proposition—forming functor of two
numerical arguments. As a third example I take the expression:

(43)If3 <5, then5> 3.

The whole formed by this expression is an implication, therefore a proposition. The
sign upon which depends this whole are the words “if-then”. This is the functor, and
the two propositions, 3 <5 and 5> 3, are its arguments. The first proposition, 3 <5, is the
antecedent, the second proposition, 5 > 3, is the consequent. Because both arguments
as well as their whole are propositions, I call the functor “if-then” a proposition—for-
ming functor of two propositional arguments.

There exist functors of more than two arguments, and also functors of only one
argument. An important proposition—forming functor of one propositional argument
is the negation—functor. If we say for instance:

(4.4.) It is not true that 5 < 3,
we get the negation of the proposition 5 < 3, where the expression “it is not true that”
is the functor, and the proposition 5 < 3 the argument.

The distinction between functors and arguments is very useful when we want to
introduce a reasonable symbolic notation into logic or mathematics.

5. Symbolic notation

Symbolic logic tends to attain the greatest possible exactness. In order to reach this
aim it is more convenient to employ a special symbolism invented for this purpose,
than to make use of ordinary language having its own grammatical laws. I shall now
describe a symbolism I have invented and employed in my logical papers since more
than twenty years which is, in my opinion, the simplest and the most reasonable one.

My symbolic notation which can be applied to logic as well as to mathematics is
based on the following three principles:

(a) As simple symbols I am always using, besides numerical figures, small and
capital letters of different kind and shape, Latin, Greek and German letters. Such
symbols are available in every printers office.

(b) Simple symbols I am always arranging in straight rows in order to build up of
them compound symbols.

(c) I am always writing the functors immediately before their arguments.

This third principle is very important, for it enables me to avoid brackets. Let us
explain this point on an example borrowed from mathematics.

The associative law of addition runs in the ordinary notation thus:

(5.1) (a+b)+c = a+(b+c)
and cannot be stated without brackets. If you omit the brackets, you get the formula:

(5.2) a+b+c = a+b+c, '
which does not represent the law of association, being only — if senseful at all - a
special case of the law of identity:

(5.3)a=a.

In my notation I replace first the symbol + by the capital German ®(sum), as I am using
German capitals for denoting number~forming functors of numerical arguments, and
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secondly I replace the symbol = by the Latin capital £ in its written form, as I am
using such letters for denoting proposition-forming functors of numerical arguments.
[nstead of (a+b)+ c I write ® @ abe, instead of a+(b+c) I write ®a ®bc, and the law of
association gets thus the form:

(5.4) £ PeabcPa®bc.

This formula contains no brackets, is shorter than the usual formula (5.1), and can
be read only in one way. It is the most concise expression of the associative law of
addition.

In the same way I am writing logical formulae. In the Principia mathematica
the implicational functor is denoted by a symbol similar to an inverted C which is
written between its arguments. The implication “if p, then 4” is thus denoted by p D
g. The compound expression p D g O r without brackets or dots is senseless or at least
ambiguous, for it can mean either (p D g) D r or p D (§ D r). In my notation no expression
can be ambiguous. Using C for denoting the implicative functor “if” I write CCpygr
instead of (p O 4) D r, and CpCyr instead of p O (g D r). The expression p D g D r cannot
be written at all, it is senseless. In the same manner [ write all the other propositional
functions of two arguments, as conjunctions, alternations and equivalences. Each
functor of two arguments is placed on the front of its arguments and is immediately
succeeded by them. This must be kept in mind, when you want to understand a more
complicated formula, e.g. the so called law of the hypothetical syllogism which has
the form:

(5.5) CCpgCCqrCpr.

Knowing that C is a functor of two propositional arguments which immediately
succeed Cforming together with Canew compound propositional expression, you must
first find out the simple implications, i.e. the implications having as arguments propo-
sitional variables. Of such a kind are the expressions Cpg, Cqr, and Cpr, contained in
the above formula. Draw brackets around each of them: you will get the expression:

(5.6) C(Cpg)C(Cqr)(Cpr).

Now you can easily see that the initial C of the formula has the propositional expression
(Cpq) as its first argument, and the whole rest, i.e. C(Cqr)(Cpr) as its second argument.
This rest is again an implication having (Cqgr) as its first, and (Cpr) as its second
argument. In a similar way you can analyze all the formulae containing C or other
functors of two propositional arguments,

1f there is a formula with a negation - I denote the negation-functor by N - you must
keep in mind that negation is a function of one argument only, which immediately
succeeds N and forms together with N a new propositional expression. Having
therefore a formula with N, for instance:

(5.7) CpCNpg,
you must, if you want to understand this formula, draw brackets around the simple
negation Np, thus:

(5.8) CpC(Np)g, _
and then you can see at once that the whole formula is an implication with p as its
first argument, and with C(Np)q as its second argument. The last expression is also
an implication having the negation (Np) as its first and the variable g as its second
argument.

6. What is formal logic
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The symbolism described roughly in the preceding section enables us to formalize
logical and mathematical proofs. But before explaining what is meant by formalization
we must know what is formal logic, since symbolic logic is formal logic.

“Itis usual to say that logic is formal, in so far as it is concerned merely with the form
of thought, that is with our manner of thinking irrespective of the particular objects
about which we are thinking.” This is a quotation from the well-known textbook of
Formal Logic by ].N. Keynes. I read in this quotation the expression “form of thought”
which I do not understand. Thought is a psychical phenomenon and psychical
phenomena have no extension. I wonder what is meant by the form of an object which
has no extension. The expression “form of thought” is inexact and it seems to me that
this inexactitude arose from a wrong conception of logic. If you believe indeed that
logic is the science of the laws of thought, you will be disposed to think that formal
logic is an investigation of the form of thought.

It is not true however that logic is the science of the laws of thought. It is not the
object of logic to investigate how we are thinking actually or how we ought to think.
The first task belongs to psychology, the second to a practical art of a similar kind as
mnemonics. Logic has no more to do with thinking than mathematics has. You must
think, of course, when you have to perform an inference or a proof, as you must think
too, when you have to solve a mathematical problem. But the laws of logic do not
concern your thinking in a greater degree than do mathematical laws. The so called
“psychologism” in logic is a mark of the decay of logic in modern philosophy.

The problem what is formal logic arose on the basis of the Aristotelian syllogistic.
Let us consider the syllogism (2.2); this syllogism contains three concrete terms,
“philosopher”, “man”, and “mortal”. These terms are called the matter of the syllo-
gism. But concrete terms, as “philosopher” or “man”, do not belong to logic, since
logic is not a science about philosophers or men. If we want to get a pure logical law,
we must remove the matter from the syllogism. This was done by Aristotle, who has
introduced variables instead of concrete terms. The syllogism (2.1) is a pure logical
law, because it contains no matter, but can be applied to various kinds of matter. What
remains after the matter of the syllogism has been removed, is called the form of the
syllogism. Let us see of what elements consists this form.

To the form of the syllogism belong, besides the number and the disposition of
variables, the so called logical constants. These constants are in our case logical functors.
Two of them, the conjunctions “and” and “if-then”, are proposition-forming functors
of two propositional arguments, and belong to the logic of propositions. The third
functor, “every-is”, is a proposition-forming functor of two terminal arguments, and
is characteristic for the Aristotelian syllogistic. There are still three other functors of
this kind in the syllogistic, viz. “no-is”, “some-is”, and “some-is-not”. All these four
constant functors, being functors of two arguments, are relations in the field of universal
terms. The Aristotelian syllogistic is the theory of these relations, and it is obvious that
such a theory has nothing more in common with our thinking, than for instance the
theory of the relations greater and less in the field of numbers. In a similar way the
logic of propositions is the theory of logical constants in the domain of propositions. All
logical systems are formal in this sense, that they employ variables, term~ or proposition—
variables, instead of their concrete values, and are investigating the properties of logical
constants, especially functors, by means of which these variables are connected.
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7. Formalization

It is obvious that the greatest possible exactness which is the aim of modern formal
logic, can be reached only by means of a precise language built up of stable, visually
perceptible signs. Such a language is indispensable for any science. Our own thoughts
not formed in words are for ourselves almost inapprehensible, and the thoughts of other
people, when not bearing an external shape, could be accessible but to a clairvoyant.
Every scientific truth, in order to be perceived and verified, must be put into an external
form intelligible to everybody. All these statements seem incontestably true. Modern
formal logic gives therefore its utmost attention to the precision of language. The so
called formalism is the consequence of this tendency. In order to understand what it is,
let us analyze the following example.

I take as example the Stoic syllogism (2.3) which is a rule of inference, called formerly
modus ponens and now the rule of detachment. According to this rule, if an implication
of the form “if &, then B” is asserted and the antecedent a of this implication is asserted
too, we are allowed to assert its consequent B. In order to be able to apply this rule we
must know that the proposition a, asserted separately, expresses “the same” thought
as the antecedent « of the implication, since only in this case we are allowed to perform
the inference. We can state this only in the case, when these two ‘s have exactly the
same external form, i.e. when they are equiform. For we cannot directly grasp the
thoughts expressed by these o’s and a necessary, although not sufficient condition for
identifying two thoughts is the equiformity of their expressions. When, for instance,
asserting the implication: “if all philosophers are men, then all philosophers are
mortal” you would assert as the second premiss the sentence “every philosopher is
a man”, you could not get from these premisses the conclusion: “all philosophers are
mortal”, because you would have no guarantee that the sentence “every philosopher
is a man” represents the same thought as the sentence “all philosophers are men”. It
would be necessary to confirm by means of a definition, that “every a is b” means the
same as “all a’s are b’s”, replace on the ground of this definition the sentence “every
philosopher is a man” by the sentence “all philosophers are men”, and only then it
would be possible to get the conclusion. By this example you can easily comprehend
the meaning of formalism. Formalism requires that the same thought should always
be expressed by means of exactly the same series of words or symbols ordered in
exactly the same manner. When a proof is formed according to this principle, we are
able to control its validity on the basis of its external form only, without referring to the
meaning of terms used in the proof. In order to get the conclusion B from the premisses
“if o then B” and a, we need not know either what a or what B really means; it suffices
to notice that the two a’s contained in the premisses are equiform.

A proof is full and formalized, if it has no gaps and if every its step is done according
to a previously established rule of inference. To control such a proof it is sufficient to
know the rules of inference applied to the proof.

8. Examples of formalized proofs

[ shall give here two examples of formalized proofs borrowed from elementary
mathematics. These examples will show the role played in proofs by the rule of
inference on the one side, and by logical theses on the other side. '

First example: We have to prove that no number is less than itself starting from two
premisses: any number is equal to itself, and if two numbers are equal to each other,
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then it is not true that the one is less than the other.

We must first express the premisses and the conclusion in a precise symbolic
language. Using the letter £ to denote the relation of equality, the letter £ to denote the
relation “less than”, the letter C to denote the functor “if-then”, the letter N to denote
negation, and employing the letters @ and b as numerical variables, we get as premisses
the formulae:

(8.1) £ aq,

(8.2) C £abNLab.

The first premiss reads in words: “a equals a”, the second: “if a equals b, then it is not
true that a is less than b”. We have to draw the conclusion:

(8.3) Ndaa,
that means: “it is not true that z is less than a”.

I shall apply to this proof two rules of inference: the rule of detachment and the
rule of substitution. The first rule has been already explained. The second rule I shall
use in its simplest form, viz.: it is allowed to get from an asserted thesis a new one, by
substituting in every place where a variable occurs in it, another variable of the same
kind. For instance, I shall substitute in (8.2) 4 for b in every place where b occurs. I note
this substitution in the following way:

(82)b/a* (8.3)
I call this line the derivational line, for it precedes and justifies the subsequent new
thesis (8.3). The symbol “/”, used only in derivational lines, is the sign of substitution,
* is a mark dividing the formula into two parts. The first part: (8.2) b/a, means that
we have to put in (8.2) instead of the variable b the variable 4, the second part: (8.3)
denotes the new thesis arising by this substitution. It is the thesis:

(8.3) C&aa.daa.

In words: “If a equals 4, then it is not true that 4 is less than a”. To this thesis we apply
the rule of detachment. (8.3) is an implication, because it begins with a C, and has
as antecedent the asserted proposition (8.1), £aa. We are allowed therefore to detach
its consequent N.Za, and assert it separately. I write again a derivational line which
justifies this consequence:
(8.3) * C(8.1)—8.4)

The two parts of this line denote the same thesis (8.3). The second part shows how this
thesis is constructed, making obvious that the rule of detachment may be applied to
it: (8.3) is an implication with (8.1) as antecedent, so that we may detach (8.4) as a new
thesis. The symbol “~”, used only in derivational lines, is the sign of detachment. We
get therefore:

(8.3) N.caa.

The whole proof consists of six lines which I put here together;

(8.1) Eaa

(8.2) CEabN4ab

(82)b/a™ (8.3)
(8.3) C&aaN.2a
(8.3) * C(8.1)—(8.4)

(8.4) N.2aa
This proof has no gaps, it is therefore a full proof, and it is a formalized one, as you
can check its validity knowing only the rules of inference. It suffices to state first: that
(8.3) differs from (8.2) only in this respect, that in place of b occurs everywhere a, and
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secondly: that the initial C of (8.3) is immediately followed by a set of three letters
equiform to (8.1). You need not know the meaning of £ and of £ either. The proof is
valid for any £ and £ satisfying the premisses. If, for instance, the values for 2 and b
are expressions denoting lines on a plane, and £ab means “a is parallel to b”, and £ab
means “a is perpendicular to b”, the proof will be likewise valid. For it is true that any
line is parallel to itself, and if two lines are parallel to each other, then it is not true
that the one of them is perpendicular to the other. From these premisses results the
conclusion that no line is perpendicular to itself,
Second example. We have again to prove that no number is less than itself starting
from only one premiss: if a is less than b, it is not true that b is lees than 4. In symbols:
(8.5) CabN.4ba.
This premiss however, together with the rules of substitution and detachment, is not
sufficient to prove the required conclusion. We must still have an auxiliary premiss
belonging to the logic of propositions. It is the thesis:
(8.6) CCpNpNp.
In words: “if (if p, then it is not true that p), then it is not true that p”. The antecedent of
(8.6) is CpNp, the consequent is Np. Np is the negation of p, and two such propositions,
as p and Np, are called contradictory. The principle of excluded contradiction, stated
by Aristotle, says that the conjunction of two contradictory propositions, “p and
Np”, is never true. The antecedent of our thesis, however, is not a conjunction, but
an implication, and an implication of the form CpNp can be true provided that pis
false and Np is true. A contradiction would arise in this case, when asserting CpNp we
would also assert p; for from CpNp and p results by the rule of detachment Np, and
two contradictory propositions, p and Np, would be together true. We must therefore
accept that from CpNp results Np, and this is the sense of our thesis (8.6). It is a kind of
reductio ad absurdum.
The formalized proof of N.£aa based on the premisses (8.5) and (8.6) runs thus:
(8.5) CLabN2ba
(8.6) CCyNpNp
(8.6) p/dan ™ (8.7)
(8.7) CClaaNLaaN.Laa
(8.5 b/a*(8.8)
(8.8) CLaaNLaa
(8.7) * C(8.8)-(8.9)
(8.9) Nzaa
I hope that this proof will be intelligible to all readers who have carefully studied
the first example. As p is a propositional variable, we can substitute Zaa for p getting
thus the thesis (8.7). The other two steps of the proof do not involve a difficulty. Thesis
CCpNpNp which belongs to the logic of propositions is essential for this proof. It would
be impossible to get from the mathematical premiss (8.5) the conclusion (8.9) by means
of the Aristotelian syllogistic. Almost all mathematical proofs require some auxiliary
theses belonging to propositional logic. It is therefore highly important that every stu-
dent of mathematics and logic should know the logic of propositions.
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[II] A Survey of Theses’

Theory of deduction is the most elementary part of the logic of propositions. It contains
only propositional variables and proposition-building functors of propositional
expressions. We shall later extend this system by introducing constant arguments,
variable functors, and quantifiers. As the theory of dedygtion is not sufficiently known,
I shall give before a systematic exposition of this theory a survey of its most important
theses together with their mutual relations and some “meta-logical” explanations. I
shall start with implicational theses, i.e. with theses containing besides propositional
variables only the implicational functor “if-then”.

[A. Implication]

9. The principle of identity

I denote propositional variables by p, g, , s,..., and the functor “if” by C. The
expression Cpg means “if p, then 4” (“then” may be omitted), and is called “implication”
with p as the antecedent and g as the consequent. C does not belong to the antecedent,
it combines only the antecedent with the consequent. The simplest C-thesis is the
principle of identity:

(9.1) Cpp.

In words: “If p, then p”. Examples: “If today is Tuesday, then today is Tuesday”. “If 3 is
less than 5, then 3 is less than 5”. This thesis is of no use for proving p, because the proof
would be circular, but it is very important as a premiss. We can derive from it many
other theses by substitution. The rule of substitution will be exactly formulated in the
systematic part; for the moment it suffices to know that for the propositional variables
may be substituted any significant expressions, and in our C-theory an expression is
called significant, when it is either a variable or an implication having significant ex-
pressions as antecedent and consequent. Such an expression is for instance Cpqg, because
its antecedent and consequent, p and g, are significant expressions. By substituting Cpg
for p we obtain a new thesis:

(9.2) CCpaCpg.

In a similar way we can get by substitution the theses CCCpqrCCpqr, CCpCqrCpCar,
CCCpqCpqCCpqCpyg, and so on. No new theses can be derived from (9.1) by detachment,
although it is possible to apply the rule of detachment to some of its consequences.
Take for instance the thesis CCCpgCpgCCpqCpq. Its antecedent is the thesis (9.2), so
we can detach the consequent; but we cannot get in this way a new thesis, as in all
substitutions of the principle of identity the consequent must be identical with the
antecedent.

It is obvious that from Cpp can be derived Cqg, and from Cgq again Cpp. Cpp is
equivalent to Cgg, which is another form of the principle of identity. From Cpp can
also be derived CCpqCpg, but it is impossible to obtain Cpp from CCpgqCpq by the rules
of substitution and detachment. We say that CCpgCpq is weaker than Cpp, and Cpp is
stronger than and independent of CCpqCpq. This independence must be proved, and
the general method of proving independences may be described as follows:

If we have to prove that a thesis B of a system is independent of a set of theses A
of the same system (the set A may consist of only one thesis), it is sufficient to find a
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property @ satisfying the following three conditions:

(a) p must belong to every thesis of the set A;

(b) @ must be hereditary with respect to the rules of inference accepted in the
system;

(c) @ must not belong to the thesis B.

A property is called hereditary with respect to a rule of inference, if it is transmitted by
the rule from the premisses to the conclusion. When the above conditions are satisfied,
it is plain that B cannot be a consequence of A, since all the consequences of A must
have the property ¢, which does not belong to B.

The ordinary proofs of independence given by the mathematicians, e.g. that the
axiom of parallels is independent of all the other axioms of the Euclidean geometry,
are performed according to a special case of the above general method. They all are
called proofs by interpretation, for they are based on an interpretation of constant
terms occurring in A and in B, which verifies A without verifying B. In this case is the
property “being true”, and it is plain that this property is hereditary with respect to all
valid rules of inference.

A property ¢ can be easily found in our example. Thesis (9.2) begins with two C’s,
and all its consequences must also begin with two C’s, for all its consequences can be
obtained by substitution, and [at] the beginning two functors cannot be altered by any
substitution. We see therefore, that the structural property: “beginning with two C's”,
belongs to the thesis CCpqCpg, is hereditary with respect to the rules of substitution
and detachment, the sole rules of inference accepted in the C-system, and does not
belong to Cpp which begins with one C. Cpp therefore is independent of CCpgCpg. I
shall give in the next section another proof of this independence based on the so called
matrix-method.

Cpp is not only independent of CCpgCpy, it is, of course, independent of the whole
set of its weaker consequences. This fact is of some interest philosophically. You can
sometimes meet the opinion that if all the weaker consequences of a universal law are
true, the law itself must be true. The afore—cited example shows that this opinion is
not generally true.

10. The principle of simplification

The second simplest C-thesis is the following one, called in Principia mathematica
(rather improperly) “the principle of simplification”:

(10.1) CpCqgp.
In words: “If p, then if g, then p”; p is the antecedent, Cgp the consequent. This principle
is not so evident as the principle of identity, but it can be brought to evidence thus:
Let us take for p the true proposition: “3 is less than 5”; we get by detachment: “If g,
then 3 is less than 5”, where g is any proposition whatever. When g means: “Today is
Tuesday”, we get the true implication: “If today is Tuesday, then 3 is less than 5”. When
q means: “Today is not Tuesday”, we get the true implication: “If today is not Tuesday,
then 3 is less than 5”. It does not matter, of course, whether today is Tuesday or not, 3
is always less than 5, this proposition is true under any condition. Speaking generally:
if o is a true proposition, then the implication Cqa is always true; or in other words: if
the consequent of an implication is true, then the implication is true without regard to
the antecedent. This principle was known to the mediaeval logicians who have formed
the rule: verum sequitur ad quodlibet.
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The principle of simplification enables us to adjoin to a thesis any antecedent you
choose. So we get for instance:

(9.1) Cpp

(10.1) p/Cpp * C(9.1)<(10.2)

(10.2) CqgCpp
According to the derivational line preceding this thesis, we first obtain by the
substitution p/ Cpp the thesis CCppCqCpp, which is here omitted for the sake of brevity,
and then from this thesis we get by detachment CqgCpp.

Applying (10.1) to itself we get another example of a thesis with an adjoint
antecedent:

(10.1) p/CpCqp, q/r * €(10.1)~(10.3)

(10.3) CrCpCyp.

In a similar way we can obtain from (10.3) the thesis CsCrCpCqp and then CtCsCrCpCqp,
and so on. All these consequences of the principle of simplification are equivalent to this
principle, because from CrCpCqp, for instance, we can get again CpCqp by substitution
r/CrCpCqp and detachment. There exist also weaker consequences of (10.1), and two
of them deserve our attention:

(10.1) p/ CpCqp, q/ Crr * C(10.1)~(10.4)

(10.4) CCrrCpCqp

(10.1) p/CpCqp, g/ CpCqp * C(10.1)~(10.5)

(10.5) CCpCgpCpCqp.

It was shown by A. Tarski that each of these consequences is independent of CpCqp,
but both taken together yield CpCqp. The latter proof is easy:
(10.4) r/ CpCqp * C(10.5)~(10.1)

(10.1) CpCqp.

The proof that CpCqp is independent of (10.4) and of (10.5) taken separately is not so
easy. I shall first prove that CpCqp is independent of CCpCqpCpCqp. The proof is based
on a structural property of the thesis (10.5): every variable occurs in this thesis an
even number of times. This property, which does not belong to CpCqp, is hereditary
with respect to the rules of substitution and detachment. This is evident for the rule
of substitution, because whatever significant expression we may put for a variable
we must do that an even number of times. Further, if every variable occurs an even
number of times in Caf and «, then it must also occur an even number of times in f.
Let the number of occurrences of a variable contained in {3 be 2n in Cap, and 2k in «;
then the number of its occurrences in B is 2112k = 2(n—k), thence it is even. On the basis
of this property we can not only prove that CpCqgp is independent of CCpCqpCpCqp,
but that is also independent of Cpp. Proofs of independence based on the property that
every variable occurs an even number of times were first given by Tarski.

Itis not always easy to find a structural property needed for a proof of independence.
We want to have a general method which could be applied to any case. Such a method
was first published by P. Bernays, but at the same time it was invented by myself
independently of Bernays. I call it the matrix-method, because it is connected with
many-valued systems of logic built up upon the so called “matrices”. T shall explain
this method by an example.

Let us assume that the figures 1, 2 and 3 denote three constant values of propositional
variables. It is irrelevant what is the meaning of those values; we have only to define
which value belongs to an implication having 1, 2 or 3 as antecendent and consequent.
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This can be done in several ways. For our purpose we accept the following 9 definitions
(the sign “=” can be read “means the same as”):

Cll=1, C12=2, C13=2,

C21=1, C2=1, C23=1,

C3l=1, C32=2, C33=2.

C 1 2 3

*1 1 2 2

2 1 1 1

3 1 2 2
M,

It is convenient to write down these equalities in form of a table which is called a
matrix. The first argument is in the left column, the second one in the top line of the
matrix. The purpose of this matrix, and of all similar matrices, is to construct a property
@ hereditary with respect to the rules of substitution and detechment. We select for this
purpose a value among the figures 1, 2 and 3, for instance 1, and mark it by an asterisk.
We say that a thesis is verified by the matix M, if for all combinations of the values
1, 2 and 3, put in the thesis for the variables and reduced according to the matrix, we
obtain the selected value 1. That will be better understood by an example. I shall show
that the thesis CCpqCpq is verified by the matrix M,. For this purpose we must form the
following nine combinations:

p/1,4/1: CC11C11 = C11 =1, p/2,q/1: CC21C21 =C11 =1,
p/1,q/2:CC12C12=C22 =1, pl2,9/2: CC22C22=Cl1 =1,
p/1,4/3: CC13C13=C22 =1, p/2,9/3: CC23C23=Cl1 =1,

pl3,9/1: CC31C31 =C11 =1,
p/3,q/2: CC32C32=C22 =1,
. pi3.4{3: CCBCB=CN2=1
I shall explain these formulae for the substitution p/3, §/2. We get by this substitution
from CCpqCpq the expression CC32C32. According to the matrix, C32 means the same
as 2, we replace therefore C32 by 2 getting from CC32C32 the expression C22. Now C22
means the same as 1 according to the matrix. So we obtain finally by reduction 1. Since
for all combinations of the values 1, 2 and 3 put for the variables we get as the final
result 1, we say that CCpqCpq is verified by the matrix M,.

The property “to be verified by the matrix M,” is hereditary with respect to the
rules of substitution and detachment. This is obvious for the rule of substitution, since
the range of the values cannot be enlarged by any substitution. So for instance, thesis
CCpqgCpq is verified by the matrix M;; thence thesis CCpCqpCpCqp which follows from
CCpgCpq by the substitution 4/ Cgp, also must be verified. For Cgp must assume one of
the values 1, 2, 3, and it was shown that CCpgCpyq is verified by the matrix for all the
values of pand g. Every thesis verified by a matrix transmits the property of verifiability
by this matrix to all its consequences which may be obtained by substitution.

A sufficient, but not a necessary condition, that the property of verifiability by a
matrix should be hereditary with respect to the rule of detachment, can be described
as follows: Let i and j be values of a matrix; if i is a selected value, then Cij has a
selected value only when also j is a selected value. So for instance in our matrix M,,
C11 has the selected value 1, as its antecedent and its consequent are both selected
values, but C12 and C13 have the value 2, as their consequents 2 and 3 are not selected
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values. A matrix which satisfies the above condition is called “normal”. Every thesis
verified by a normal matrix transmits the property of verifiability by this matrix to all
its consequences which may be obtained by detachment. Matrix M, is normal, and we
see at once, that if Caf =1 and a = 1, then § must be 1, since for B =2 or 3, Cup (= C1p)
cannot have the value 1.

Now, CCpqCpq is verified by the matrix M,, but not CpCgp, because for p/3, /3
we get: C3C33 = C32 = 2. CpCqp therefore is independent of CCpqCpg, and also of
CCpCgpCpCqp. It can be proved by the same matrix that Cpp is independent of
CCpqCpgq, for CCpgCpyq is verified by M, but not Cpp which gives for p/3 the not
selected value 2.

Returning to our problem, set forth on p. 18, we must now prove that CpCqp is
independent of CCrrCpCqp. This prove is based on a structural property. I shall show
by a method invented by Tarski that no thesis can be obtained from CCrrCpCqp by
detachment. I shall call such theses “undetachable”. The method of proving that a
thesis is undetachable is very simple. If we want to derive from (10.4), i.e. CCrrC pCqp,
a thesis by detachment, we must get two substitutions of (10.4), one of them being Ca,
and the other . Let us suppose that Caf follows from (10.4) by the substitutions r/y,
p/d, q/¢, and has the form:

(10.6) CCyyCdCed,
and a results by the substitutions r/«, p/A, 4/ u, having the form:

(10.7) CCkxCaCu.

Thesis (10.7), being o, must be equiform to the antecedent of (10.6) which is Caf; we
may write: '

(10.8) CCxxCACuh = Cyy,
where the geometrical symbol “=" represents the relation of equiformity. Because the
left side of the formula (10.8) is equiform to its right side, it follows that the antecedent
of the left side must be equiform to the antecedent of the right side, and the consequent
of the left side to the consequent of the right side. We get therefore the formulae:

(10.9) Cxk =y and (10.10) CACuh = y.

It follows from these formulae that

(10.11) Cxx = CACuh,
because both Cxx and CACuh are equiform to the same expression y. Applying to
(10.11) the same way of reasoning as to (10.8), we obtain two other formulae:

(1012)x =2 and (10.13) k = Cpd,
and from these formulae results the final consequence:

(10.14) A = Cuh.

This consequence is obviously false, for no expression can be equiform to a part of
itself. Our supposition that two substitutions can be got from CCrrCpCgp, one of the
form Cap, and the other of the form e, leads to a false consequence, therefore cannot
be true. Thesis CCrrCpCqgp is undetachable.

It follows from this that all the consequences of (10.4) are obtainable only by
substitution. It is obvious that by substitution we cannot derive CpCgp from CCrrCpCgp.
CpCqp therefore is independent of CCrrCpCqp.

Our problem concerning the principle of simplification is now solved completely.
CpCqp is equivalent to its two weaker consequences, CCrrCpCqp and CCpCqpCpCyp.
We say that it is “decomposable” into two weaker theses. It was shown by Tarski that
there are only a few theses which are decomposable in this manner.
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11. The principle of the syllogism
The most powerful and most frequently used instrument of proof is the principle of
the hypothetical syllogism. It runs:
(11.1) CCpgCCqrCpr.
In words: “If (if p, then g), then if (if ¢, then r), then (if p, then r)”. The construction
of this formula was explained in the “Introduction” p. 9. To make this principle
evident I shall give an example. Let p mean: “today is the first Monday in August”;
- “today is a Bank Holiday”; r - “the banks are legally closed”. From the implications:
“if today is the first Monday in August, then today is a Bank Holiday”, and “if today
is a Bank Holiday, then the banks are legally closed”, there follows according to the
principle of the syllogism that “if today is the first Monday in August, then the banks
are legally closed”.
I shall now derive from this principle some consequences which also are
important.
(11.1) p/Cpy, q/ CCqrCpr, r/s * C(11.1)«11.2)
(11.2) CCCCqrCprsCCpgs
(11.2) p/s, s/ CpCsr* (11.3)
(11.3) CCCCqrCsrCpCsrCCsqCpCsr
(11.2) q/Cqr, r/Csr, s/ CCsqCpCsr * C(11.3)~(11.4)
(11.4) CCpCqrCCsqCpCsr
(11.4) p/CpCqr, g/ Csg, r/CpCsr, s/t * C(11.4)~(11.5)
(11.5) CCtCsqCCpCqrCtCpCsr
(11.5) t/Cpq, s/ Cqr, q/ Cpr, p/s, v/t * C(11.1)-(11.6)
(11.6) CCsCCprtCCpqCsCCqrt
(11.6) s/Cpg, p/q, t/Cpr, q/s * C(11.1)(11.7)
(11.7) CCqsCCpgCCsrCpr
Among these consequences the most important are theses (11.4) and (11.7). The latter
thesis is a kind of sorites with a twist in the premisses, as the natural order of them
would be CCpqCCqsCCsrCpr. Theses CCpqCCqrCpr and CCpgCCqsCCsrCpr are in-
dependent of each other (try to prove this by the matrix method). We can obtain the
principle of the syllogism from the sorites CCpgCCqsCCsrCpr by means of the principle
of identity, thus:
(9.1) Cpp
(11.8) CCpqCCqsCCsrCpr
(11.8) g/p, s/g9* C(9.1)-(11.1)
(11.1) CCpgCCqrCpr,
but matrix M, shows that Cpp is independent of CCpgCCqrCpr and of the sorites
(11.8), which both are verified by this matrix. All the three principles, Cpp, CpCqgp and
CCpgCCqrCpr are independent of each other.
There exists a second form of the principle of the syllogism of an almost equal
importance:
(11.9) CCqrCCpqCpr.
The difference between (11.1) CCpgCCqrCpr and (11.9) CCqrCCpqCpr can be described
in the following way: The first principle is of the form C1C23, whereas the second has
the form C2C13. 3 means here the conclusion Cpr, 1 and 2 are the premisses Cpg and
Cqr upon which the conclusion depends. We see that the premisses are commuted
in (11.9) with regard to (11.1). This is irrelevant, when both premisses are true, but it
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makes a difference, when neither of them is true, or only one. All the consequences
of the second form of the syllogism are different from those of the first form. Let us
deduce some of them:
(11.9) g/ Cqgr, r/ CCpqCpr, p/s * C(11.9)-(11.10)
(11.10) CCsCqrCsCCpqCpr
(11.10) s/ Cqr, q/Cpq, r/ Cpr, p/s * C(11.9)-(11.11)
(11.11) CCqrCCsCpgCsCpr
(11.11) g/ Cqr, v/ CCpgCpr, p/t * C(11.9)-(11.12)
(11.12) CCsCtCqrCsCtCCpqCpr
(11.12) s/ Cqr, t/Cpgq, q/p, p/s * C(11.9)=(11.13)

(11.13) CCqrCCpqCCspCpr
The last consequence is also a kind of sorites with another twist in the premisses.
Neither form of the syllogism gives the ordinary sorites as stated in (11.8).

The two forms of the syllogism are independent of each other. That the first form is
independent of the second, can be proved by the matrix M, which verifies (11.9) without
verifying (11.1), because we get from CCpgCCqrCpr by the substitution p/2, g/1, r/3:
CC21CC13C23 = C1C23 = 2. The matrix proving that CCqrCCpqCpr is independent of
CCpqCCqrCpr is more complicated (try to find it).

C 1 2 3
-1 1 2 2
2 1 1 3
3 1 1 il

M

2

The principle of the hypothetical syllogism was known to Aristotle and was
studied by Theophrastus. It is one of a few theses of the propositional logic known to
mathematicians and employed by them.

12. The principle of commutation
Another very important C-thesis is the so called “principle of commutation”. It
runs thus:
(12.1) CCpCqrCqCpr.
In words: “If [if p, then (if g, then )], then [if g, then (if p, then r)]”. The antecedent of
this formula is CpCqr, the consequent CqCpr. We see that p and g are commuted in the
consequent with regard to the antecedent. Example: Let us take as antecedent of (12.1)
the proposition: “if N is an even number, then if it is divisible by 3, it is divisible by 6”;
then the consequent will be: “if N is divisible by 3, then if it is even, it is divisible by 6”.
It is obvious that this consequent must be true, provided the antecedent is true.
By the principle of commutation we can get at once from the first form of the
syllogism its second form, and vice versa. Here are the respective deductions:
From CCpgCCqrCpr to CCqgrCCpqCpr;
(12.1) p/Cpg, q/ Cqr, v/ Cpr * C(11.1)-(11.9)
(11.9) CCqrCCpgCpr
From CCqrCpqCpr to CCpqCCqrCpr:
(12.1) p/Cqr, g/ Cpg, v/ Cpr * C(11.9)~(11.1)
(11.1) CCpgCCqrCpr.
Applying (12.1) to itself we get the following consequence:
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(12.1) p/CpCqr, v/ Cpr * C(12.1)-(12.2)
(12.2) CgCCpCqrCpr.
This consequence is equivalent to the principle of commutation, because CCpCqrCqCpr
tollows from CqCCpCqrCpr:
(12.2) q/ CqCCpCaqrCpr, p/s, v/t * C(12.2)-(12.3)
(12.3) CCsCCqCCpCqrCpritCst
(12.2) q/CpCqr, p/q, r/ Cpr * (12.4)
(12.4) CCpCqrCCqCCpCqrCprCqCpr
(12.3) s/ CpCqr, t/ CqCpr * C(12.4)-(12.1)
(12.1) CCpCqrCqCpr.
This neat deduction was given by Tarski.

There exist many interesting connexions between the principle of commutation
and the foregoing three principles. From the principle of commutation together with
CCpqCpyq, a consequent of the principle of identity results the following thesis:

(9.2) CCpgCpq

(12.1) p/Cpq, q/p. r/q* C(9.2)-(12.5)

(12.5) CpCCpyq.

In words: “If p, then if (if p, then g), then ¢”. A thesis equivalent to (12.5), but formulated
with “and”: “if (p and if p, then g), then ¢”, is called in Principia mathematica "“the
principle of assertion”, and is explained (rather loosely) as follows: “if p is true, and ¢
follows from it, then g is true”. I shall retain the name “principle of assertion” for thesis
(12.5).

The principle of assertion gives with either form of the syllogism the principle of
commutation. Thesis (12.1) results directly from CqCCqgrr, another form of (12.5), and
(11.4), a consequence of the first form of the syllogism, and indirectly by means of
(12.2) from CqCCqrr and (11.10), a consequence of the second form of the syllogism.
The deductions proceed as follows:

(12.5)p/q, q/r * (12.6)
(12.6) CqCCqrr
(11.4) CCpCqrCCsqCpCsr

(11.4)p/q, q/Cqr,s/p* C(12.6)-(12.1)
(12.1) CCpCqrCqCpr

(11.10) CCsCqrCsCCpqCpr
(11.10) s/ g, g/ Cgr * C(12.6)<12.2)
(12.2) CqCCpCqrCpr.
Thesis (12.2) is equivalent to the principle of commutation.
The principle of commutation is independent of all the former principles taken
separately.
We may remark at the end that from the principle of simplification taken together
with the principle of commutation follows the principle of identity:
(10.1) CpCqp
(12.1) r/p * C(10.1)~(10.2)
(10.2) CqCpp
(10.2) g/ CqCpp * C(10.2)-(9.1)
(9.1) Cpp.
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13. The principle of Frege

There exists a C—thesis not much important as to its own consequences, but very
powerful when combined with some other theses. It is the following one:

(13.1) CCpCqrCCpqCpr.

In words: “If if p, then (if g, then r), then if (if p, then g), then (if p, then r)”. Its antecedent
is CpCyqr, its consequent CCpqCpr. This thesis resembles on the one side to the second
form of the syllogism, and on the other side to the principle of commutation. If you drop
Cp in the antecedent, you will get CCqrCCpgCpr, and if you drop Cp in the consequent,
you will get CCpCqrCqCpr. The sense of (13.1) may be explained as follows: The
antecedent CpCqr asserts that r depends upon two conditions, p and g; the consequent
CCpqCpr states that if the second condition g depends on the first p, then r depends
only on p. Example: Let p mean: “the sum of the figures of number N is divisible by 9”;
q— “N is divisible by 9”; r — “N is divisible by 3”. From CpCqgr we get the implication:
“if the sum of the figures of number N is divisible by 9, then if N is divisible by 9, N is
divisible by 3”. But Cpyq is true, for “if the sum of the figures of number N is divisible by
9, then N is divisible by 9”. Therefore Cpr is true: “if the sum of the figures of number
N is divisible by 9, then N is divisible by 3”.

[ have called (13.1) “the principle of Frege”, because Frege discovered this thesis
a[nd] raised it to the dignity of an axiom together with some theses with negation and
two other C—theses, the principle of simplification and the principle of commutation.
Frege’s system of axioms, however, is not independent. It can be shown that the
principle of commutation follows from thesis (13.1) and the principle of simplification.
The deduction is somewhat long, but instructive.

The premisses are:

(10.1) CpCyp

(13.1) CCpCqrCCpqCpr

It follows from these premisses:

(10.1) p/ CCpCqrCCpyCpr, g/ s * C(13.1)-(13.2)

(13.2) CsCCpCqrCCpqCpr

(13.1) p/s, q/ CpCqr, r/ CCpqCpr * €(13.2)~(13.3)
(13.3) CCsCpCqrCsCCpqCpr

(10.1) p/Cqr, q/p * (13.4)
(13.4) CCqrCpCqr

(13.3) s/ Cqr* C(13.4)—(13.5)
(13.5) CCqrCCpgCpr

(13.1) p/Cqr, 9/ Cpg, r/Cpr * C(13.5)-(13.6)
(13.6) CCCqrCpqCCqrCpr

(10.1) p/CpCqp, g/ CCqpr * €(10.1)~(13.7)
(13.7) CCCqprCpCqp

(13.6) q/Cqp * C(13.7)-(13.8)
(13.8) CCCqprCpr

(13.8)q/p, p/q, r/Cpr*(13.9)
(13.9) CCCpqCprCqCpr

(13.5) g/ CCpqCpr, r/ CqCpr, p/s * C(13.9)-(13.10)
(13.10) CCsCCpgqCprCsCqCpr

(13.10) s/ CpCqr * C(13.1)-(12.1)
(12.1) CCpCqrCqCpr.
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It can be easily seen that from Frege’s principle, taken together with the principle of
simplification, result all the theses which were hitherto established. Thesis (13.5) is the
second form of the principle of the syllogism, and gives together with commutation
the first form of the syllogism. From simplification and commutation follows identity,
and from identity and commutation the principle of assertion.

There is another important consequence of theses (10.1) and (13.1) which directly
follows from the principles of assertion and Frege:

(12.5) CpCCpyqgq

(13.1) CCpCqrCCpgCpr

(13.1) 4/ Cpg, r/ g * C(12.5)-(13.11)

(13.11) CCpCpqCpg.

Thesis (13.11) means in words: “If if p, then (if p, then g), then (if p, then g)”. CpCpgq is
the antecedent, and Cpq the consequent. The antecedent asserts that 4 depends on two
conditions which are identical; the consequent states that it suffices to mention this
conditions only once. This thesis was known to the Stoics, but was misunderstood by
their commentators. The Stoic example was: “If it is day, then if it is day, it is light; but
it is day: therefore itis light”. To prove this syllogism the Stoics applied to it the modus
ponens twice: first, from the implication “if it is day, then if it is day, it is light”, and the
premiss “it is day”, they derived by the modus ponens the consequence “if it is day, then
it is light”; secondly, from the implication “if it is day, it is light”, and the premiss “it is
day” they derived again by the modus ponens the conclusion “it is light”.

Thesis CCpCpqCpq yields assertion and commutation, when it is combined
with simplification and the first form of the syllogism, according to the following
deduction:

(10.1) CpCqp

(11.1) CCpgCCqrCpr

(13.11) CCpCpqCpq

(11.2) CCCCqrCprsCCpgs (first consequence of (11.1))

(13.11) p/ Cqr, g/ ¢ * (13.12)
(13.12) CCCqrCCqrrCCqrr

(11.2) p/ Cqr, s/ CCqrr * C(13.12)-(13.13)
(13.13) CCCqrqCCqrr

(11.1) g/ Cqp * C(10.1)~(13.14)
(13.14) CCCqprCpr

(13.14) q/Cqr, p/q, r/ CCqrr * C(13.14)~(12.6)

(12.6) CqCCqrr.

(12.6) is the principle of assertion; from (12.6) and (11.1) results the principle of
commutation, as was shown above.

Thesis CCpCpqCpq may be called “the principle of Hilbert”, since D. Hilbert included
it into the axioms of his system of logic. Both principles, that of Frege and that of
Hilbert, are independent of all the foregoing principles. It is easy to check that matrix
M, verifies identity, simplification, both forms of the syllogism, commutation and
assertion. Frege’s principle is not verified, for we getforp/2, q/2, r/3: CC2C23CC22C23
= CC22C12 = C1C12 = C12 = 2, nor Hilbert’s principle is verified, because we have for
7/2,9/3: CCACICI3 = CC222 =12 =12,
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C 1 2 3
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2 1 1 2
3 1 1 1

M,

14. The so—called “positive logic”

The system of consequences which can be deduced by the rules of substitution and
detachment from the principle of simplification and the principle of Frege, i.e. from:

(10.1) CpCqp

(13.1) CCpCqrCCpqCpr,
forms a natural part of the implicational system, i.e. of the system of C-theses, and
was called by Bernays “positive logic”. In two system[s] of theory of deduction, that
of Frege and that of Hilbert, the axioms without negation are positive logic, and other
C-theses not belonging to this logic can be derived only by the help of axioms with
negation. In the so called “intuitionist” logic, founded by Brouwer and Heyting, only
those C-theses are accepted that belong to positive logic.

The set of C-axioms in Frege's system consists of three theses, simplification, Frege’s
principle, and commutation, and is not independent, for commutation follows from
simplification and Frege’s principle. The set of C-axioms in Hilbert’'s system consists
of the following four theses:

(10.1) CpCqp

(11.9) CCqrCCpqCpr

(12.1) CCpCqrCqCpr

(13.11) CCpCpgCpyg.

The set of these four theses is equivalent to the theses CpCqp and CCpCqrCCpqCpr of
Frege’s system. The proof in one direction, from Frege to Hilbert, was given above; in
the other direction, from Hilbert to Frege, we must only prove that CCpCqrCCpqCpr
results from the theses of Hilbert, as CpCgp is common to both sets of theses. This proof
runs as follows:

As premisses we take three axioms of Hilbert, (11.9), (12.1) and (13.11), as (10.1) is
not needed for the proof. The conclu[sion] will be thesis (13.1).

(11.11) CCqrCCsCpqCsCpr (a consequence of (11.9))

(11.11) g/ CpCpq, r/ Cpg, p/t * C(13.11)(14.1)

(14.1) CCsCtCpCpgCsCtCpg

(11.9) r/Cpr * (14.2)
(14.2) CCqCprCCpqCpCpr

(14.1) s/ CqCpr, t/Cpq, q/ r * C(14.2)-(14.3)
(14.3) CCqCprCCpqCpr

(11.9) g/ CqCpr, r/ CCpgCpr, p/s * C(14.3)-(14.4)
(14.4) CCsCqCprCsCCpqgCpr

(14.4) s/ CpCqr * C(12.1)~(13.1)

(13.1) CCpCqrCCpgCpr.

The set of the four axioms of Hilbert is independent. Matrix M, proves the
independence of simplification of the remaining axioms, M, that of commutation,
and M, that of the principle of Hilbert. In order to prove that the second form of the
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svllogism is independent of all the other axioms, we must have a new matrix, M,
Neither form of the syllogism is verified by this matrix because we get for 4/2, r/3,
r/1: CC23CC12C13 = C1C13 = C13 = 3, whereas all the other axioms are verified. Matrix
M, is not normal, for C12 = 1, nevertheless the property to be verified by it is hereditary
with respect to the rule of detachment. It is easy to see that according to this matrix
the implication Cpg can never assume the value 2; C18 therefore can have the value 2
in the consequent only when B is a variable. But in this case C1p = Clq, and cannot be
1, because we can put 3 for g getting thus C13 = 3. If therefore Cap = 1 and o = 1, then
B must be 1.

1 2 3

*1 1 1 3

2 1 1 1

3 1 1 1
M

4

If we replace in Hilbert's set of axioms the second form of the syllogism by the first
form, we can drop the principle of commutation which follows from the remaining
axioms, as was shown in the foregoing section. The set of axioms:

(10.1) CpCqp

(11.1) CCpqCCqrCpr

(13.11) CCpCpgCpyq
is a base of positive logic, like theses (10.1) and (12.1).

15. The principle of Peirce

There is a lot of C~theses independent of positive logic, and one of the strongest
among them is the following thesis:

(15.1) CCCpgpp.

CCpqp is the antecedent, p is the consequent. It would be in vain to try to explain
this thle]sis in words or to make it evident by the help of other C~theses. For the
moment it suffices to observe that p is either true or false. If p is true, then thesis (15.1)
is true according to the scholastic principle: verum sequitur ad quodlibet. If p is false,
then according to another scholastic principle: ad falsum sequitur quodlibet, i.e. a false
proposition entails any proposition, Cpg is true, and therefore CCpgp is false, because
its antecedent is true and its consequent false. Thence thesis (15.1) is true according to
the second scholastic principle.

Thesis (15.1) I have called “the principle of Peirce” for C.S. Peirce first discovered
this thesis. It does not occur either in Frege’s work or in Principia mathematica. It is
independent of all the foregoing theses. Matrix M, verifies the positive logic without
verifying Peirce’s principle, because we get for p/ 2 q/4: CCC2422 = CC422 = C12 = 2,
The principle of Peirce gives together with simplification and the first form of the
syllogism the whole implicational logic, as we shall see in the next section.
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Another thesis, independent of positive logic, reads as follows:
(15.2) CCCpqqCCapp.
CCpgq is the antecedent, CCgpp the consequent. It is as difficult to explain the meaning
of this thesis in words, as to explain the meaning of Peirce’s principle. But, as we shall
see later, CCpgq may be taken as definiens of the alternation, i.e. of the function “p or ¢”,
in symbols Apg; then CCqpp will mean Aqp, and thesis (15.2) will be equivalent to the
commutative principle of alternation: CApgAgp, which is evident.
Peirce’s principle easily follows from (15.2) and the principle of Hilbert:
(13.11) CCpCpqCpq
(15.2) CCCpqqCCqpp
(15.2) g/ Cpq ™ C(13.11)~(15.1)
(15.1) CCCpgpp.
Knowing already that Peirce’s principle is independent of positive logic, we can prove
the independence of (15.2) without recurring to a matrix: since (15.1) is independent
of positive logic, so must be also (15.2), from which follows (15.1) in connexion of a
thesis of this logic.
The next thesis:
(15.3) CCCpqrCCrpp
can be regarded as a generalization of the former thesis, for we get from it (15.2) by the
substitution r/g. Of a similar kind is the thesis:
(15.4) CCCpqrCCprr,
which resembles to the so called “constructive dilemma”. CCpgr is the antecedent,
CCprr the consequent. The thesis assert that if r follows from Cpg and from p, and both
premisses Cpg and p are true, then r is true. From (15.4) we get Peirce’s principle by
commutation and identity:
(9.1) Cpp
(12.1) CCpCqrCqCpr
(15.4) CCCpgrCCprr
(12.1) p/ CCpgr, g/ Cpr * C(15.4)-(15.5)
(15.5) CCprCCCpaqrr
(15.5) r/p * C(9.1)~(15.1)
(15.1) CCCpqpp.
There are theses which are independent of the positive logic, but weaker than the
principle of Peirce. Of such a kind is the following thesis:
(15.6) CCCpqrCCCqprr.
CCpgr is the antecedent, CCCqprr the consequent. The thesis is a constructive dilemma,
like (15.4). If r follows from Cpq and if it follows from Cgp, and both premisses, Cpq
and Cgp, are true, then r is true. Thesis (15.6) is weaker than Peirce’s principle, as can
be seen by the matrix M, which verifies not only the whole positive logic, but also
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115.6), without verifying the principle of Peirce. Another matrix, M,, shows that it is
mdependent from the positive logic. M, contains M, but adds to it a line and a column
with the new figure 5. The positive logic is again verified, but neither Peirce’s principle
nor thesis (15.6), because we get for p/5, /4, r/2: CCC542CCC4522 = CC42CC522 =
ClC12=C12=2,
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The principle of Peirce is an “undetachable” thesis. This can be proved not only by
the method described in section 10, but also by the matrix-method. Matrix M, verifies
this principle. From CCCpgpp we have for p/1: CCC1411. But Clqg can be either 2 or 4:
we get therefore CC211 or CC411, and in both cases the result is C31 = 1. For p/2 we
have CCC2422 which gives either CC322 or CC122; in both cases the result is C22 = 1.
For p/3 we have CCC3433, and we get either CC133=C43 =1, or CC233 = C33 = 1. For
p/4 we have CCC4444, and we get either CC344 =C24 =1, 0or CC144=C44 = 1. M, has
this particularity that Cpg does not assume the selected value 1, when its antecedent
is 1. This shows that a thesis verified by this matrix cannot give a consequence by
detachment, since it is impossible to derive from it two theses of the form Cap = 1 and
a =1, as C1f can never have the selected value 1. I do not know any thesis which would
be verified by M,, except CCCpqpp and its consequences obtained by substitution.

C 1 2 3 4
"1 2 2 4 4
2 3 ! 3 1
3 1 2 1 2
4 3 3 1 1
M?
16. Implicational logic

The system containing all C-theses is called “implicational logic”. It can be based,
as was proved by Tarski, on the following three axioms:

(10.1) CpCqp

(11.1) CCpgCCqrCpr

(15.4) CCCpqrCCprr.
Bernays observed that the third axiom may be replaced by the simpler thesis CCCpgpp,
and that consequently the set of axioms:

(10.1) CpCqp (simplification)
(11.1) CCpgCCqrCpr  (first form of the syllogism)
(15.1) CCCpgpp (Peirce’s principle)

forms a sufficient basis for the implicational logic. These three axioms are known as
the “Tarski-Bernays” set. The set is independent, i.e. each axiom is independent of the
remaining two. For CCCpgpp the proof is given by the matrix M, for CCpqCCqrCpr
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by the matrix M,, and for CpCqp by a new matrix M,, which verifies both forms of the
syllogism and Peirce’s principle without verifying CpCqp, as we get for p/3 and any
q: C3Cq3 =2.

% 1 2 3 4

"1 1 2 4 4

2 1 1 4 4

3 2 2 1 2

4 1 2 1 1
M,
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The proof that all implicational theses follow from the Tarski-Bernays set by
substitution and detachment will be given in the systematic part, where I shall show
that this set of axioms is equivalent to the axiom:

(16.1) CCCpgrCCrpCsp,
the shortest of all single axioms that suffice to build up the implicational logic. At
present I shall deal with some methodically interesting problems connected with the
set Tarski-Bernays.

M. Wajsberg has proved that the first axiom of this set, CpCqp, may be replaced
by any one of the following theses: CpCCpqq, CpCCqpp, CpCCqqp, CqCpp, CqCCCpppp,
CqCCCpppCCppp, CaCCppCpp, CqaCCppCCppCpp, CpCCppp, CpCpp. These results were
partially generalized by the author who stated, that CpCgp may be replaced by any
thesis of the form CpCop, provided a is a consequence of the new set of axioms, or
by any thesis of the form Cqa, where a does not contain variables equiform to . The
author has got these results by a kind of inductive argument.

I shall prove below only by substitution and detachment that the axiom CpCgp
may be replaced in the Tarski-Bernays set by any thesis which has a variable as its
antecedent, and an implication as its consequent, i.e. by any thesis of the form CpCaf,
where o and P are a new kind of propositional variable. 1 shall explain this kind of
variable after the deduction of CpCgp from CpCap which runs, as follows:

The premisses are:

(16.2) CpCaup

(11.1) CCpqCCqrCpr

(15.1) CCCpqpp.

It follows from the premisses:

(11.1) p/Cpgq, 4/ CCqrCpr, r/s * C(11.1)~(16.3)

(16.3) CCCCqrCprsCCpgs (11.2)

(16.3) p/s, s/ CpCsr * (16.4)
(16.4) CCCCqrCsrCpCsrCCsqCpCsr (11.3)

(16.3) g/ Cqr, 1/ Csr, s/ CCsqCpCsr * C(16.4)-(16.5)
(16.5) CCpCqrCCsqCpCsr (11.3)

(16.3)q/Cpr, r/s, p/Cqr,s/t* (16.6)
(16.6) CCCCCprsCCqrstCCCqrCprt

(16.5) p/ CCCCprsCCqrst, q/ CCqrCpr, r/t,s/Cpq * C(16.6)-C(11.1)(16.7)
(16.7) CCCCCprsCCqrstCCpqt

(16.3) 5/ CCsrCpr * (16.8)
(16.8) CCCCqrCprCCsrCprCCpqCCsrCpr

(16.7) p/q, s/ Cpr, 4/s, t/ CCpaCCsrCpr * C(16.8)~(16.9)
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(16.9) CCgsCCpqCCsrCpr (11.7)
(16.5) p/Cqs, 9/ Cpg, r/ CCsrCpr, s/t * C(16.9)—(16.10)
(16.10) CCtCpgCCqsCtCCsrCpr
(16.9) g/ CCpgp, s/p, p/s * C(15.1)-(16.11)
(16.11) CCsCCpqpCCprCsr
(16.9) 4/ CsCCpgp, s/ CCprCsr, p/t, t/v * C(16.11)~(16.12)
(16.12) CCtCsCCpgpCCCCprCsruCty
(169)q/a,s/B, p/Csq, r/s * (16.13)
(16.13) CCapCCCsqaCCPsCCsgs
(11.1) g/ Cap, r/ CCCsqaCCPRsCCsqgs * C(16.2)-C(16.13)~(16.14)
(16.14) CpCCCsqaCCPsCCsqs
(11.1) p/ CCsga, 4/ CCPsCCsgqs, r/ Csq * (16.15)
(16.15) CCCCsqaCCRsCCsgsCCCCPsCCsqsCsqCCCsqalCsq
(11.1) g/ CCCsqgaCCPsCCsqs, r/ CCCCPsCCsqsCsqCCCsqaCsq *
C(16.14)-C(16.15)-(16.16)
(16.16) CpCCCCPsCCsqsCsqCCCsqaCsq
(16.5) p/CCsqq, g/ CCCPsCCsqsCsq, r/q * (16.17)
(16.17) CCCCsqqCCCCRsCCsqs5Cs9qCCsCCCPsCCsqsCsqCCCsqqCsq
(16.12) t/p,s/CCCBsCCsqsCsq, p/Csq, g/, r/q,
v/ CCsCCRsCCsqsCsgCCCsq4Csq *
C(16.16)-C(16.17)—(16.18)
(16.18) CpCCsCCCPsCCsqsCsqgCCCsgqCsq
(16.11) s/CCsgs, p/s, g/ CCCPsCCsqsCsq * (16.19)
(16.19) CCCCsqsCCsCCCPsCCsqsCsqsCCsrCCCsqsr
(16.12) t/p, s/CsCCCPsCCsqsCsq, p/ Csg, r/s, v/ CCsrCCCsqsr
* C(16.18)—C(16.19)(16.20)
(16.20) CpCCsrCCCsgsr
(16.10) t/p, p/ Csr, q/ CCCsgsr, s/ CCrsr * C(16.20)—(16.21)
(16.21) CCCCCsqsrCCrsrCpCCCCrsrrCCsrr
(16.7) p/Csq, r/s, s/r,q/r, t/ CpCCCCrsrrCCsrr * C(16.21)—(16.22)
(16.22) CCCsqrCpCCCCrsrrCCsrr
(16.22) s/p, g/ CCCCrprrCCprr * (16.23)
(16.23) CCCpCCCCrprrCCprrrCpCCCCrprrCCprr
(15.1) p/ CpCCCCrprrCCprr, g/ r * C(16.23)~(16.24)
(16.24) CpCCCCrprrCCprr
(15.1) p/r, g/ CCCpqpp * (16.25)
(16.25) CCCrCCCpgpprr
(16.24) p/ CCCpapp * C(15.1)~C(16.25)~(16.26)
(16.26) CCCCCpgqpprr
(16.26) 4/, r/ Cap * (16.27)
(16.27) CCCCCppppCqpCap
(16.22) s/p, q/p, v/p, p/q* (16.28)
(16.28) CCCpppCqCCCCppppCCppp
(16.12) t/CCppp,s/q,p/CCppp,q/p, r/p, v/Cqp*
C(16.28)-C(16.27)~(16.29)
(16.29) CCCpppCap
(16.24) r/p * (16.30)
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(16.30) CpCCCCppppCCppp
(16.11) s/p, p/ CCppp, q/p. v/ Cqp * C(16.30)-C(16.29)—(16.31)

(16.31) CpCaqp.

If we replace in this deduction the letters o and B in all places where they occur, in the
theses as well as in the derivational lines, by such expressions that CpCaff becomes
a thesis, we obtain the proof of CpCpq based on this thesis and on the principles of
syllogism and Peirce. Take p for o and p for ; then CpCaf3 becomes CpCpp, therefore a
thesis, and we get from this thesis and the principles of syllogism and Peirce CpCqp. In
the same way all the other interpretations of a and p which verify CpCaf, give a proof
of CpCqp. No interpretation of the Greek letters breaks the coherence of the proof. This
proof is a generalization of all the particular results obtained by Wajsberg.

Matrix M, verifies the principles of the syllogism and of Peirce without verifying
CpCaf. Whatever expressions may be denoted by a, and §, we always get C3Caf =2,
because Cap never assumes the value 3. As M, also verifies the principle of identity, we
see that the set of axioms: Cpp, CCpgCCqrCpr and CCCpgpp, cannot prove the principle
of simplification, and consequently cannot form a basis of the implicational logic.
There is no possibility to replace the axiom CpCap by the more general axiom Cpa. It
is worth-while to observe that, if we accept 2 instead of 1 as value for the implication
(33 in M,, the new matrix again verifies the principles of the syllogism and of Peirce,
but does not verify any more the principle of identity. No implication the antecedent
of which is a variable is verified by this matrix.

17. On two kinds of propositional variable

In the proof of the foregoing section I employed Latin as well as Greek letters to
denote propositional variables. Although some other authors, among them Wajsberg,
also employ Latin and Greek variables, there exists, as far as I know, no publication
clearly defining the difference between them. This difference, however, seems to me
methodically important.

Latin variables, like p or g, are connected with a range of values which may be
substituted for them. Any significant propositional expression may be a value of
p, and may be substituted for p. I would call them “substitution-variables”. Greek
variables, like a or B, are also connected with a range of values which are propositional
expressions, but during a deduction in which they occur nothing can be substituted
for them. Only afterwards they may be interpreted in various ways. I would call them
“interpretation—variables”. Let us explain by examples the nature and the effects of
this essential difference.

If in the above proof based on the axiom CpCoff the Greek variables a and B
were replaced by the Latin variables s and f, the proof would be useless. From the
expression:

(I) CpCst
we could get at once a variable as consequence, by substitution and two detachments:

(I) p/ CpCst, s/ CpCst, t/p * C()-C(D)~(11)

I p,
and from a variable follows by substitution any propositional expression, not only
CpCqp, but also CCpgCCqrCpr and CCCpgpp. In this case there would be needless to
take pains of performing the above complicated deduction. This deduction has a sense
only when « and B represent such expressions that verify CpCap, i.e. when CpCof is
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a thesis. Now, there are various pairs of values for a and { that verify CpCap, e.g..p
and p, q and g, Cpg and g, CqCpr and Cqr, as any one of the expressions: CpCpp, CpCqq,
CpCCpgqq, CpCCqCprCqr, is a thesis. If we want to have a general formula, we must
employ variables, but of another kind than hitherto used. I chose Greek letters for these
new variables, but a rule of substitution cannot be stated for them, as it is impossible to
express by a general formula the properties that must have a together with  in order
to verify CpCaf. We only can say: if you find such a’s and B’s that verify CpCap, the
proof based on this axiom is for them valid. In other words, we can nothing substitute
for the Greek variables, but we can have various interpretations of them.

Another difference between Latin and Greek variables is made clear by the same
example: the Latin variables are unrestricted, as they represent any significant
propositional expression, whereas the range of values of the Greek variables is always
restricted. They always must satisfy some conditions, in our case the condition that
CpCap should be a thesis. This fact may be explained by a much simpler example.
The usual formulation of the rule of detachment reads: “if Caf is asserted, and « is
asserted, then p must be asserted”. Here are employed Greek variables, for it cannot be
said: “if Cpq is asserted, and p is asserted, then ¢ must be asserted”. It would be an error
to assert Cpq or g, since neither of these expressions is a true proposition, and only true
propositions can be asserted. But we can use Greek variables, as we can assume that «
and p satisfy the condition of verifying Caff and a.

There are other properties of Greck variables which deserve our attention. Not only
nothing can be substituted for the Greek variables, but also the rule of substitution
for the Latin variables must be cautiously used in theses where occur both Latin and
Greek variables. We always must keep in mind that possible interpretations of « and
B may be affected in such theses by a substitution for the Latin variables. This clearly
appears in the following example: Axiom CpCa is verified by the interpretation o =
Cpp, B = p, as CpCCppp is a thesis. Therefore

(16.14) CpCCCsqaCCPRsCCsqs
is also verified by this interpretation yielding the thesis:

(17.1) CpCCCsqCppCCpsCCsygs.
if, however, thesis (16.14) were altered by a substitution, for instance thus:

(16.14) p/Cpp, s/p. q/p * (1I)

(IIT) CCppCCCppaCCRpCCrpp,
then we would get from it by the above interpretation a false expression:

(IV) CCppCCCppCppCCppCCppp,
as all the antecedents of this expression are theses, and the consequent is a variable.
The substitution: (16.14) p/Cpp, s/p, q/p, affects the possible interpretation o = Cpp
and § = p, because the variable p, for which the substitution is made, occurs in the
interpretation too. Variables a and f occurring in (III) are not the same as in (16.14).
The same substitution applied to (17.1) gives:

(17.2) CCppCCCppCCppCppCCCpppCCppp,
which is different from (III) and a thesis. In our deduction of CpCgp no substitution
has been made in theses with Greek variables. This is the safest proceeding. There are,
however, theses with Latin and Greck variables, where a substitution for the Latin
variables does not lead to an error. Of such a kind are theses which are verified for all
interpretations of the Greek variables occuring in them, for instance substitutions of
theses without Greek letters, like (16.13) or (16.15) of our deduction. Also thesis (16.18)
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belongs to this kind, as it does not contain o, but only B. Now, for the interpretation a =
Cpp the axiom CpCap becomes a thesis, CpCCppp, and therefore all the consequences of
the set CpCCpBp, CCpgCCqrCpr and CCCpgpp are theses, whatever may be the meaning
of f.

There areinstances of expressions with Latin and Greek variables where asubstitution
for the Latin variables is unavoidable. Let us consider the following example:

I found a theorem concerning the principle of the syllogism which reads: “If « verifies
the premisses CCpga and CaCCqrCpr, we can deduce from them CCpgCCqrCpr”. In all
interpretations of o which verify the premisses must occur both p and g, otherwise
CCpga were verified only when a is a thesis, but in this case CCqrCpr were a thesis too,
and this is impossible. It is plain therefore that any substitution for p and g affects o,
and without such a substitution we cannot perform the proof. As we do not know how
a is altered by a substitution, we must rely on the evident principle that two identical
substitutions alter a in the same way. This principle is employed in the following
deduction:

(17.3) CCpgo.

(17.4) CaCCqrCpr

(17.3) p/Cpy, g/ a, v/ CCqrCpr * C(17.3)-(17.5)

(17.5) a(p/ Cpq, 9/ o, v/ CCqrCpr)

(17.4) p/Cpgq, 4/ a, r/ CCqrCpr * C(17.5)-C(17.4)-(11.1)

(11.1) CCpgCCqrCpr.

Although r does not occur in (17.3), the substitution for r has to be taken into account,
since the same substitution must be made in (17.3) as in (17.4), and r may occur in an
interpretation of a. This substitution, of course, has no effect, when the interpretation of a
does not contain . The thesis arising by substitution from a is marked by a followed by the
generating substitution in brackets. Two examples will clear up the matter:

First example: a = CCCpgrr, i.e. r occurs in a.

(17.6) CCpgCCCpgqrr

(17.7) CCCCpqrrCCqrCpr

(17.6) p/ Cpgq, g/ CCCpaqrr, r/ CCqrCpr * C(17.6)(17.8)
(17.8) CCCCpqCCCpqrrCCqrCprCCqrCpr
(17.7) p/ Cpg, g/ CCCpqrr, r/ CCqrCpr * C(17.8)-C(17.7)-(11.1)

(11.1) CCpgCCqrCpr

Second example: a = CCCqgspyg, i.e. r does not occur in a.

(17.9) CCpgCCCqspq

(17.10) CCCCqspgCCqrCpr

(17.9) p/Cpg, 9/ CCCqspyg, r/ CCqrCpr * C(17.9)-(17.11)

(17.11) CCCCCCqspqsCpqCCCaspq

(17.10) p/Cpgq, q/ CCCqspg, r/ CCqrCpr *
C(17.11)-C(17.10)-(11.1)

(11.1) CCpgCCqrCpr
The substitution for r in (17.9) is of no consequence, as r does not occur in (17.9). Expressions
(17.6), (17.7), (17.9) and (17.10) are theses (try to prove them), the first two and the last belong
to positive logic, and (17.9) is related to (15.3) which does not belong to positive logic.

We see from the deduction of section 16, and from the just proved theorem about the
principle of the syllogism, that the introduction of Greek variables enables us to generalize
connexions between theses of propositional logic.
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B. Negation

18. The principle of Duns Scotus

The most important function of propositional logic after implication is negation.
We shall later see that by means of these two functions all the other functions of
propositional logic can be defined. The negation functor which is a proposition—
building functor of one propositional expression is denoted in my symbolic by “N”.
It is difficult to render the function “Np” either in English or in any other modern
language, as there exists no single word for the propositional negation. The ancient
Stoics used for this purpose the single word ouyL. We have to say by circumlocution
“it-is-not-true-that” or “it-is-not-the—case—that”. For the sake of brevity I shall use
the expression “not”, so that “Np” will mean “not-p”.

There exists no thesis with N as the sole functor; another functor of two arguments
is always necessary to build up a thesis with N. If this other functor is C, we have a
“C-N-thesis”, and these theses will be considered in the sequel.

To the most important C-N-theses belong the following two which are equivalent
to each other by commutation, and represent the same idea:

(18.1) CpCNpg

(18.2) CNpCpg.

In words: “if p, then if not-p, then 4”, and “if not-p, then if p, then g”. In both cases
q depends upon two premisses, p and Np. Two propositions of the form o and Na
are called contradictory, and a famous principle stated by Aristotle says that two
contradictory propositions are never together true. Philosophers regard this principle
of “excluded contradiction” as one of the most fundamental laws of thought. We shall
see, however, that it has but a little importance in the system of propositional logic.
The venom attributed usually to contradiction is hidden in the above theses (18.1)
and (18.2). If two contradictory propositions, like a and Na, were asserted both, we
would get from each of these theses by two detachments an arbitrary proposition g,
and therefore all possible propositions. A difference between truth and falsity would
cease to exist, and it would be to no purpose to construct a system of logic.

Each of the above two theses may be called “the principle of Duns Scotus”, as the
idea involved in them was set forth in a commentary on Aristotelian logic ascribed to
Duns Scotus. It is worth-while to reproduce his argument. It is based on some evident
rules of inference concerning conjunction and alternation. Let us suppose, that the
following conjunction consisting of two contradictory propositions: “Socrates is and
Socrates is not” (Socrates est et Socrates non est) is true. If a conjunction is true, then
each of its components is true. It follows therefore that the proposition “Socrates is”
is true. From this proposition follows the alternation: “Socrates is or the stick stands
in the corner” (Socrates est vel baculus stat in angulo) for an alternation is true, if one of
its components is true. On the other side it follows from the conjunction that the pro-
position “Socrates is not”, which is the negation of “Socrates is”, is also true; but from
an alternation and the negation of one of its components results the other component.
Therefore it is true that “the stick stands in the corner”. This conclusion which has no
real connexion with the premisses shows that from two contradictory propositions
may be formally deduced any proposition whatever.

The already quoted scholastic principle: ad falsum sequitur quodlibet, is based on the
principle of Duns Scotus. Let us suppose that « is true; then we get from (18.1) by
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detachment CNag, where Na as the negation of a true proposition is false. If therefore
the antecedent of an implication is false, the implication is true.

The two forms of Duns Scotus’ principle are independent of each other. Thesis (18.2)
is undetachable, as easily follows from its structure as well as from the undetaching
matrix M,, which verifies (18.2) The figures in the column N are the values of Np for
arguments exhibited in the column C. M, does not verify (18.1). On the contrary, matrix
M, verifies (18.1) without verifying (18.2), because we get for p/2,q/3: CN2C23 =C12
=2.

1 2 N
g 2 = 2
11 2
M‘)
c 1 2 3 N
"1 1 2 2 3
2 1 1 2 1
3 1 I 1 1
M

10
Two important consequences result from the two forms of the principle of Duns
Scotus and the first form of the principle of the syllogism:
(11.1) CCpgCCqrCpr
(18.1) CpCNpgq
(11.1) g/ CNpg * C(18.1)-(18.3)
(18.3) CCCNpgrCpr

(18.2) CNpCpgq
(11.1) p/Np, q/ Cpq * C(18.2)~(18.4)

(18.4) CCCpgqrCNpr.

A curious example can be given as illustration of thesis (18.4). Let us assume that “if
the positions and the velocities of all particles of a material system are determinated
at a certain moment (= p), then they are determinated at the next moment too (= ¢). If
this implication is true, then we may say: “the principle of determinism is valid (= r).
As r follows from the implication Cpg, then CCpqr or the antecedent of (18.4), is in our
example true; therefore its consequent, CNpr, must also be true. Let us now suppose
according to the well-known Heisenberg's relation that “the positions and velocities
of all particles of a material system are not determinated at a certain moment”; then
Np is true, and therefore r is true, i.e. the conclusion “the principle of determinism is
valid” remains true.

19. The principle of Clavius

Another very important C-N-thesis is the following principle:

(19.1) CCNppp.
In words: “If (if not—p, then p), then p”. CNpp is the antecedent, p is the consequent. Np and p
are two contradictory propositions, and cannot be together true. If therefore an implication
of the form CNpp is true, Np cannot be true, for from CNpp and Np would follow by
detachment p, and two contradictory propositions, Np and p, were together true.
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I called CCNppp “the principle of Clavius”, because Clavius first drew attention
to this peculiar thesis. Clavius, a learned Jesuit of the XVIth century and one of the
constructors of the Gregorian calendar, was a commentator of Euclid, and found
that Euclid employed this thesis in one of his proofs. Euclid states this fundamental
arithmetical theorem: “if the product of two integers, axb, is divisible by a prime
number 1, and a is not divisible by #n, then b should be divisible by n”. This theorem
he applies then to a particular case, where a equals b, and proves: “if the product axa is
divisible by a prime number n, then z is divisible by n”. The proof runs thus: “suppose
that axa is divisible by #; then if 4 is not divisible by n, it is divisible by #; therefore it is
divisible by n”. An implication is here given which has as its antecedent the negation of
its consequent; “if a is not divisible by », then a is divisible by n”, and a logical principle
enables us to deduce from this implication its consequent. This logical principle was
seen by Clavius, and this is his merit, because Aristotle himself did not see it, when he
said that a consequence of the form “if B is not great, then B is great” is impossible.

It seems that the principle of Clavius has got some popularity among the learned
Jesuits of the next two centuries, and was called by them consequentia mirabilis. A Jesuit
mathematician, Girolamo Saccheri, tried in the beginnings of XVIIIth century to apply
this principle to geometry. He thought that every fundamental principle must have the
property to result from its own negation, and believed therefore that he could prove
Euclid axiom of parallels by the consequentia mirabilis. He started then his investigations
from the denial of this axiom thinking that this way would lead him to its proof. He
did not succeed in proving the axiom but constructed without knowing it the first
system of a non—Euclidean geometry,

The principle of Clavius has its consequence in a thesis mentioned already in the
“Introduction”:

(19.2) CCpNpNp.

This thesis is called in Principia mathematica the “principle of reductio ad absurdum”.
Although similar to the principle of Clavius, it is in some sense weaker. As we shall see
later, the set of theses:

(11.1) CCpgCCqrCpr

(18.1) CpCNpg

(19.1) CCNppp
forms a sufficient basis for all the C-N-theses, and together with definitions, for the
whole Theory of Deduction. Not so the set of theses which arises by replacing CCNppp
by CCpNpNp. This latter set is verified by the matrix M, , whereas CCNppp is not
verified by this matrix.

20. The two principles of double negation

Two negations annul each other. This evident fact finds its expression in this
following two theses called the “principles of double negation”:

(20.1) CyNNp

(20.2) CNNpp.

In words: “If p, then not-not-p” and “if not-not—p, then p”.
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i i 2 N
1 1 2 1
1 T

Mll
B 1 2 N
1 1 2 1
1 1
M

12

The two theses together form an equivalence. They are independent of each other, as
can be proved by the matrices M, and M,,. M,, verifies (20.1) without verifying (20.2),
whereas M, , verifies (20.2) without verifying (20.1). For the sake of convenience I shall
say in the sequel that a matrix which does not verify a thesis “falsifies” it. M., verifies
(20.1), but falsifies (20.2), M, , verifies (20.2), but falsifies (20.1). The implicational part
of both these matrices is the same; I denote it by M. M, is the simplest matrix that
verifies the axiom of the implicational logic: (16.1) CCCpgqrCCrpCsp, and therefore all
the C-theses. If we define N1 by 2 and N2 by 1, and add this matrix for N to M, we get
M, the simplest matrix that verifies all the C-N-theses.

L 1 2
*1 1 2
2 1 1
MO
C 1 2 N
1 1 2 2
2 1 1 1
M,

The matrices M,, M,, and M, differ only by various combinations of the values 1
and 2 for N, viz. 11, 22, and 21. There remains only one combination not yet taken into
consideration, 12. This combination yields the matrix M,,. M,, verifies both principles
of double negation, but falsifies the principle of Duns Scotus as well as the principle of

Clavius.

C 1 2 N
5 1 2 1
1
M

13
Every C-N-thesis containing a genuine N must be falsified by at least one of the

matrices M|, M, or M,,. I say that a thesis contains a “genuine N”, when it cannot
be obtained by substitution from a thesis without N. So, for instance, thesis CpCNpg
contains a genuine N, as it cannot be obtained by substitution from a thesis without N,
whereas thesis CpCNgp does not contain a genuine N because it can be got from CpCqp
by the substitution g/ Ng. It can be proved that if a C-N-thesis is verified by each of the
matrices M, , M, and M,,, it does not contain a genuine N. We may argue from that,
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that if a C-N-thesis contains a genuine N, it is not verified by each of these matrices.
Expression CCpgCNpNg, which is verified by the matrices M, , M,, and M,,, cannot be
adduced as objection against this theorem, because it is not a C-N-thesis. It is falsified
by M, and as all C~-M-theses must be verified by this matrix, that is not verified by it
is not a C—N-thesis,

21. The four principles of transposition

Two arguments of the foregoing section I shall repeat here in forma: First argument:
From the implication “if T is a C-N-thesis, T is verified by M " another implication
follows: “if T is not verified by M, T is not a C-N-thesis”. Second argument: Suppose
that T is a C-N-thesis; from the implication: “if T is verified by each of the matrices
M. M,,, and M,,, T does not contain a genuine N” another implication follows: “if T
contains a genuine N, T is not verified by each of the matrices M, M,, and M,,”. Both
arguments arc instances of two principles of transposition, viz.:

(21.1) CCpqCNgNp

(21.2) CCpNgCqNp.

There are still two other similar principles:

(21.3) CCNpgCNgp

(21.4) CCNpNgCap.

All these principles have a similar construction: the two arguments of the antecedent,
p and g, are transposed in the consequent, so that g is first, and p second; moreover, the
arguments of the antecedent differ from the arguments of the consequent by an N, so
that p (and similarly g) in the antecedent corresponds to Np (Ng) in the consequent, and
Np (Ng) in the antecedent corresponds to p (g) in the consequent. Besides the principle
of the syllogism, the principles of transposition are the most important and most
frequently used instruments of proof.

The first principle of transposition was known to the Stoics as modus tollens; it reads
in the Stoic form:

If a, then 3.

But not-§.

Therefore not-a.
Itisused to refute hypotheses by facts. Suppose that a is a hypothesisin form of a general
law, and B a singular proposition about a fact resulting from «. Then the implication
Cap is true, and consequently CNBNa also must be true. If we find, however, that the
fact which should result from the hypothesis is not verified by experience, so that
is false and NP true, the hypothesis is refuted, because from CNpNa and Nf follows
Na.

The third principle of transposition is very frequently used in mathematics to prove
a theorem indirectly. Suppose that we have to prove indirectly the theorem a. We start
from its negation No, and deduce from it a false consequence 3. Then the implication
CNaf is true, and consequently CNfia also must be true. But B is false, therefore Nf
true, and from CNpo and Nf follows a.

All the principles of transposition are falsitied by the matrix M,, moreover, (21.2) is
falsified by M,,, (21.3) by M, and (21.4) by both M, and M,,. The first principle with
both negations in the consequent is in some sense the weakest, the last principle with
both negations in the antecedent [of] the strongest thesis. Roughly speaking, the more
matrices falsify a thesis, the stronger is the thesis. Axiom (16.1) of the implicational
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logic which is a very strong thesis is falsified by all the implicational matrices M, till
M, being only verified by M,

The relations of the principles of transposition to other C- and C-N-theses are very
numerous. | shall quote only two compound principles of transposition resulting from
the combination of the first principle of transposition with the second form of the
principle of the syllogism:

(21.5) CCpCqrCpCNrNg,

(21.6) CCpCgrCqgCNrNp.

These theses can be employed to prove the syllogistic moods called Baroco and Bocardo
on the basis of the mood Barbara. Let p mean: “every a is b”, g — “every bis ¢”, and r
— “every ais ¢”. Then Np, or the negation of “every a is b” means the same as “some a
is not b” and Nr means the same as “some a is not ¢”. We get by this interpretation from
the antecedent of (21.5), CpCyr, the implicational form of the mood Barbara: “if every
bis ¢, then if every a is b, every a is ¢”, which is equivalent to its normal conjunctional
form: “if every b is ¢ and every a is b, then every a is ¢”. In the consequent we get from
CpCNrNg the implicational form of the mood Baroco: “if every b is ¢, then if some a is
not ¢, some  is not b”, which is equivalent to its normal conjunctional form: “if every
b is ¢ and some 4 is not ¢, then some a is not b”.

22. Frege’s system of axioms
Frege is the author of the theory of deduction in its modern axiomatic form. His
system (F1) is based on C and N as the primitive terms, and consists of six axioms:

(10.1) CpCqp principle of simplification
(13.1) CCpCqrCCpgCpr principle of Frege
(12.1) CCpCqrCqCpr principle of commutation

(F1)
(20.1) CpNNp 1st principle of double negation
(20.2) CNNpp 2nd principle of double negation
(21.1) CCpqgCNgNp 1st principle of transposition.

It was shown already that this system is not independent, as the principle of
commutation follows from the first two axioms. But if we remove this superfluous
principle, the remaining axioms form an independent set. The independence of the
negative axioms is proved by the matrices M, , M,, and M, since M, falsifies only
(21.1) while verifying the remaining axioms, M,, falsifies only (21.2), and M,, falsifies
only (21.1). Of the axioms without negation, (10.1) is verified by M, which falsifies
(13.1), and (13.1) is verified by M, which falsifies (10.1). We must add, however, to
M, and M, the values for N, getting thus M, and M, ,. Of the five Frege’s axioms that
remain after (12.1) has been removed, M, falsifies only (10.1), and M, , falsifies only
(13.1).

1 2 3 N
1 1 2 3 3
2 1 1 3 2
3 1 1 1 1

=<
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8.1
Frege’s system of axioms which yields all the C-N-theses and through definitions
the whole theory of deduction can be reduced to only three axioms, since his three
negative theses may be replaced by the fourth principle of transposition CCNpNgCap.
This fact may be a proof that this fourth principle is stronger than the first. I shall show
below that system (F2):
(10.1) CpCqp
(F2) (13.1) CCpCqrCCpqCpr
(21.4) CCNpNgCqp
is deductively equivalent to (F1), i.e. that from (F1) follows (F2), and conversely from
(F2) follows (F1).
(a) From (F1) to (F2).
Our premisses are: axioms of the system (F1) and theses:
(11.9) CCqrCCpqCpr
(11.4) CCpCqrCCsgCpCsr,
which follow from (10.1) and (13.1). We have to deduce (21.4).
(21.1) p/Np, g/ Ng * (22.1)
(22.1) CCNpNgCNNgNNp
(20.1) p/q™(22.2)
(22.2) CgNNg
(11.4) p/CNpNg, g/ NNg, r/ NNp, 5/ q * C(22.1)-C(22.2)(22.3)
(22.3) CCNpNgCqNNp
(11.9) g/ NNp, r/p, p/ g * C(20.2)~(22.4)
(22.4) CCgNNpCqp
(11.9) g/ CqNNp, r/ Cqp, p/ CNpNg * C(22.4)-C(22.3)-(22.5)
(22.5) CCNpNgCqp. (21.4)
(b) From (F2) to (F1).
Our premisses are: axioms of the system (F2) and theses:
(11.1) CCpqCCqrCpr
(11.7) CCgsCCpgqCCsrCpr
(11.9) CCqrCCpqCpr
(12.1) CCpCqrCqCpr
(13.7) CCCqprCpr
which follow from (10.1) and (13.1). We have to deduce (20.1), (20.2) and (21.1).
(13.7) ¢/ Np, p/Ng, r/ Cgp * C(21.4)-(22.6)
(22.6) CNgCqp
(22.6) q/p, p/ Ng * (22.7)
(22.7) CNpCpNg
(13.1) p/Np, q/p, r/ Ng * C(22.7)-(22.8)
(22.8) CCNppCNpNg
(11.1) p/CNpp, g/ CNpNg, r/ Cgp * C(22.8)-C(21.4)~(22.9)
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(22.9) CCNppCaqp

(12.1) p/CNpp, r/p * C(22.9)-(22.10)
(22.10) CqCCNppp

(22.10) g4/ CqCCNppp ™ C(22.10)-(22.11)
(22.11) CCNppp

(11.1) p/Ng, g/ Cqp * C(22.6)—(22.12)
(22.12) CCCqprCNgr

(22.12) 9/ Np, r/p * C(22.11)-(22.13)
(22.13) CNNpp (20.2)

(22.13) p/ Np * (22.14)
(22.14) CNNNpNp

(21.4) p/NNp, q/p * C(22.14)~(22.15)
(22.15) CpNNp (20.1)

(22.15) p/q * [(22.16)]
(22.16) CgNNg

(11.9) r/NNg * C(22.16)~(22.17)
(22.17) CCpqCpNNgq

(11.1) p/NNp, q/p, r/ NNg * C(22.13)—(22.18)

(22.18) CCpNNgCNNpNNg

(21.4) p/Np, g/ Nq * (22.19)
(22.19) CCNNpNNgCNgNp

(11.7) g/ CpNNg, s/ CNNpNNg, p/ Cpgq, r/ CNgNp *

C(22.18)-C(22.17)-C(22.19)(22.20)

(22.20) CCpqCNgNp.

Theses (10.1) and (13.1) are the basis of positive logic. It suffices therefore to add to
the positive logic the fourth principle of transposition in order to get the whole theory
of deduction. As the implicational logic which is wider than the positive logic may be
built up on the single axiom (16.1), the set of the following two axioms:

(16.1) CCCpgrCCrpCsp

(21.4) CCNpNgCqp
also is a sufficient basis of the theory of deduction.

23. On single axioms of the C-N-logic

In continuation of the above remarks about axioms of the C-N-logic I shall here
mention the attempts that were made to establish this logic on only one axiom. The
first single axiom of this kind was found by Tarski in 1925. It contained 53 letters and
was inorganic. A thesis is called “inorganic”, when some of its parts are theses. So,
for instance, thesis CrCpCqp is inorganic, as its part CpCqp is a thesis. The first organic
axiom was discovered by Sobocifiski in 1927, and contained 139 letters. Sobocifiski
succeeded in 1933 to find an organic axiom of 27 letters, and his axiom was abbreviated
by myself in 1936 to 25 letters. It reads CCCpgCCCNrNstrCoCCrpCsp, as is connected
with the shortest axiom of the implicational logic. The deductions, however, from this
axiom are very long and difficult. In 1937 I found another axiom of 23 letters:

(23.1) CCCpgCCNrsCNttCCtpCoCrp,
and from this axiom I shall now deduce the set of theses CCpgCCqrCpr, CpCNpg and
CCNppp, as this set forms a sufficient basis of the C-N-logic.
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(23.1) t/Ns, v/NCrp * (23.2)
(23.2) CCCpgCCNrsCNNsNsCCNspCNCrpCrp
(23.1) p/Cpg, 4/ CCNrsCNNsNs, r/s, s/ p, t/Crp ™ C(23.2)—(23.3)
(23.3) CCCrpCpgCvCsCpg
(23.3) v/ Cpg * (23.4)
(23.4) CCCrpCpqCCpqCsCpq
(23.3)r/Crp, p/Cpyq, 4/ CsCpq, v/(23.1), s/ (23.1) *
C(23.4)-C(23.1)-C(23.1)-(23.5)
(23.5) CCpqCsCpq
(23.5) p/Ng, s/ CNrs * (23.6)
(23.6) CCNggCCNrsCNgqg
(23.1) p/Ng, t/ q * C(23.6)-(23.7)
(23.7) CCqNgCvCrNg
(23.7) v/CNrs, r/ NNg * (23.8)
(23.8) CCgNgCCN#sCNNgNg
(23.1) p/4q, 9/ Ngq, t/ Ng * C(23.8)-(23.9)
(23.9) CCNggCvCrq
(23.5) p/CNgg, g/ CoCrq * C(23.9)-(23.10)
(23.10) CsCCNgqCvCrq
(23.10) s/ Cpg, v/ NCrq * (23.11)
(23.11) CCpgCCNggCNCrgCrq
(23.1) r/q, 5/, t/ Crq * C(23.11)~(23.12)
(23.12) CCCrgpCuCqp
(23.12) r/Cpy, g/ CCNrsCNtt, p/ CCtpCouCrp, v/ (23.1) *
C(23.1)-C(23.1)-(23.13)
(23.13) CCCNrsCNHCCtpCuCrp
(23.12) r/CNrs, g/ CNtt, p/ CCtpCuCrp, v/(23.1) * C(23.13)-C(23.1)-(23.14)
(23.14) CCNHCCtpCoCrp
(23.12) r/p, p/ CsCpq, v/ (25.1) * C(23.5)-C(23.1)~23.15)
(23.15) C4CsCpq
(23.15) g/ Crq * (23.16)
(23.16) CCrqCsCpCryg
(23.12) p/ CsCpCra, v/ (23.1) * C(23.16)-C(23.1)~(23.17)
(23.17) CqCsCpCryq
(23.17) q/Cpq, s/ CNss, p/ NCrCpq * (23.18)
(23.18) CCpgCCNssCNepCrgCpCryg
(23.1) r/s, t/CrCpg * C(23.18)~(23.19)
(23.19) CCCrCpqpCuCsp
(23.19) v/ CNuws, s/ Np * (23.20)
(23.20) CCCrCpapCCNusCNpp
(23.1) p/CrCpq, q/p, r/v, t/p* C(23.20)~(23.21)
(23.21) CCpCrCpqCvCvCrCpq
(23.14) v/CNtt * (23.22)
(23.22) CCNitCCtpCCNIiiCrp
(23.21) p/CNtt, v/ Ctp, q/Crp, v/(23.1) *
C(23.22)-C(23.1)-C(23.1)-(23.23)
(23.23) CCtpCCNtCrp
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(23.23) t/Ctp, p/ CCNHCrp, r/s * C(23.23)~(23.24)
(23.24) CCNClCtpCsCCN#Crp
(23.24) t/r, p/t, s/ NCCNrrCNit, r/ Nt * (23.25)
(23.25) CCNCrtCrtCNCCNrrCNHCCNrrCNit
(23.13) s/r * (23.26)
(23.26) CCCNrrCN#CCtpCuCrp
(23.26) r/Crt, t/ CCNrrCNtt, p/ CCtpCuCrp, v/(23.1) *
C(23.25)-C(23.26)-C(23.1)<23.27)
(23.27) CCriCCtpCuCrp
(23.27) v/Crt * (23.28)
(23.28) CCrtCCtpCCrtCrp
(2321) p/Crt, r/Ctp,q/Crp, v/(23.1) *
(C(23.28)-C(23.1)-C(23.1)-(23.29)
(23.29) CCipCCriCrp
(23.9) q/p, vir, r/CNpp* (23.30)
(23.30) CCNppCrCCNppp
(23.21) p/CNpp, q/p, v/(23.1) * C(23.30)-C(23.1)-C(23.1)«(23.31)
(23.31) CrCCNppp
(23.31) r/ CrCCNppp * C(23.31)-(23.32)

(23.32) CCNppp (19.1)

(23.29) t/CNpp * C(23.32)~(23.33)
(23.33) CCrCNppCrp

(23.29) t/CrCNpp, p/Crp, r/ g * C(23.33)~(23.34)
(23.34) CCqCrCNppCqCrp

(23.27)r/p, t/q, p/r, v/ NCpr* (23.35)
(23.35) CCpaCCqrCNCprCpr

(23.34) 9/ Cpg, r/ Cqr, p/ Cpr * C(23.35)~(23.36)
(23.36) CCpgCCqrCpr (11.1)

(23.5) p/Np, s/ NCNpq * (23.37)
(23.37) CCNpgCNCNpqCNpq
(23.33) »/CNpg, p/ CNpq * C(23.37)—(23.38)
(23.38) CCNpgCNpg
(23.13)r/p, s/q, t/CNpq, p/ CNpgq, v/ (23.1) *
C(23.37)-C(23.38)-C(23.1)-(23.39)

(23.39) CpCNpg (18.1)

Theses (23.32), (23.36) and (23.39) are a basis of the C—N-logic. It is not known,
whether a shorter C-N-axiom exists, but this is probable. The final solution of this
problem, i.e. the discovery of the shortest C-N-axiom, requires a great technical skill,
and hardly could be made without some new conceptions of a general kind. The
problem, however, has lost much of its importance, since it has been shown that by
introduction of variable functors into the theory of deduction a system wider than this
theory may be built up on a single axiom of only ten, and even of six letters.

24. The principles of the constructive and destructive dilemma

The Greek word “lemma” means, roughly speaking, a premiss, and “dilemma”
means literally an argument which starts from two premisses. When both premisses
concur to establish a conclusion, the dilemma is called “constructive”, when they con-



Theory of Deduction 45

zar to refute a conclusion, the dilemma is called “destructive”. In both arguments
~ccur contradictory propositions: the constructive dilemma is connected with the
seindple of excluded middle, the destructive dilemma with the principle of excluded
antradiction. The constructive dilemma reads in symbols:

24.1) CCpgCCNpyqq.

m words: “If (if p, then g), then [if (if not—p, then g), then g]”. The two premisses are
=g and CNpg; the conclusion is g. Let us suppose that the implications Caff and CNaf
zre both true. Now a and Na are contradictories, and according to the principle of
excduded middle of two contradictory propositions one must be true. If & is true, then
rom Caf and a follows by detachment f; if Na is true, from CNaff and Na again
ollows B. Therefore § is true.

The destructive dilemma reads:

(24.2) CCpqCCpNgNp
Eywords: “If (if p, then g), then if [(if p, then not-g), then not—p]”. The two premisses are
Cryg and CpNg; the conclusion is Np. Let us suppose that the implications Ca and CaNp
are both true. As f and Np are contradictories, one of them must be false according to
the principle of excluded contradiction. Now, whether B is false or N, in any case o
wads to a false consequence, and therefore must be false.

The principle of constructive dilemma occurs in Hilbert’s set of axioms of the C-N-
jogic. The affirmative axioms of this set (which form a basis of positive logic and are
independent of each other) were already mentioned in section 14. I repeat them below
adding to them the two negative axioms given by Hilbert:

(10.1) CpCqp principle of simplification

(11.9) CCqrCCpqCpr  second form of the syllogism

(12.1) CCpCqrCqCpr  principle of commutation

(13.1) CCpCpqCpq Hilbert’s principle
(18.1) CpCNpg principle of Duns Scotus
(24.1) CCpqCCNpqq  princliple] of constructive dilemma

This set of axioms is, like Frege’s set, not independent. From the negative axioms we
can easily obtain by the principle of commutation the principle of Hilbert:
(12.1) gNp, r/q * C(18.1)(24.3)
(24.3) CNpCpgq (18.2)
(12.1) p/Cpq, 4/CNpg, r/9* C(24.1)-(24.4)
(24.4) CCNpgCCpqq
(24.4) q/Cpg * C(23.3)(13.11)

(13.11) CCpCpqCpy.

If we remove the redundant axiom (13.11), all the remaining five axioms are probably
independent of each other. 1 say “probably”, because I was not able either to deduce
the principle of commutation from the other axioms, or to show that it is independent
of them. The independence of the principle of simplification of the remaining axioms
including the redundant principle of Hilbert is proved by the matrix M,, which
falsifies both identity and simplification, while verifying all the other principles. The
independence of the syllogism of all the other axioms including Hilbert’s principle is
proved by the matrix M, ;; M, falsifies only axiom (18.1), and M,, only the last axiom.
If we replace the second form of the syllogism by its first form, as was done by von
Neumann, then we can derive the principle of commutation.
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C 1 2 3 N
"1 1 2 2 2
2 1 1 1 1
3 1 2 2 2
M,
C ] 2 3 N
*1 1 1 3 3
2 1 1 1 1
3 1 1 1 1
M

11
The same result we may obtain by replacing the principle of constructive dilemma by
its other form:
(24.4) CCNpgCCpaqg,
which yields in connexion with (18.1) by means of the syllogism the principle of
assertion CpCCpyqq, and consequently the principle of commutation.
With the principle of constructive dilemma are connected two important principles
not having a special name:
(24.5) CCprCCqrCCNpgr
(24.6) CCNprCCqrCCpgr.
They may be called “principles of constructive trilemma”, as from each of them follows
the conclusion r by three premisses, from (24.5) by Cpr, Cqr and CNpg, and from (24.6)
by CNpr, Cgr and Cpgq. By means of commutation and identity we can derive from
them the two forms of the principle of constructive dilemma, thus:
The premises:
(9.1) Cpp
(12.1) CCpCqrCqCpr
From (24.5):
(24.5)r/q* (24.7)
(24.7) CCpqCCqqCCNpgq
(9.1) p/q ™ (24.8)
(24.8) Cqqg
(12.1) p/Cpg, q/ Cqg, r/ CCNpgq * C(24.7)-C(24.8)—(24.1)
(24.1) CCpqCCNpqq
From (24.6):
(24.6) r/q* (24.9)
(24.9) CCNpgCCqqCCpgq
(12.1) p/CNpq, q/ Cqq, r/ CCpqr * C(24.9)-C(24.8)-(24.4)
(24.4) CCNpgCCpaqg.
Principle (24.6) forms together with thesis (24.10) which follows from (13.14) by a
change of variables:
(13.14) q/p, p/q * (24.10)
(24.10) CCCpqrCar,
and thesis (18.4) a set of three axioms:
(18.4) CCCpqrCNpr
(24.10) CCCpqrCygr
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(24.6) CCNprCCqrCCpygr
which is a sufficient basis of the C-N-logic. This set of axioms is in some respect the
most elegant of all, because it forms an organic whole. Only three different expressions
are contained in it: CCpgr which is the antecedent of the first two axioms and the
consequent of the third axiom, CNpr which is the consequent of the first and the
antecedent of the third axiom, and Cgqr which is the consequent of the second and
the (second) antecedent of the third axiom. The three axioms imply together that the
expression CCapy is deductively equivalent to the expressions CNay and Cpy.

The other “trilemmatic” thesis, (24.5), yields by means of a definition an important
principle of alternation.

The survey of most important theses of the C~-N-logic is herewith brought to the
end.

C. Alternation

25. The definition of alternation

We shall learn in the systematic part that in the two-valued theory of deduction
there exist four functions of one argument, and sixteen functions of two arguments. All
these functions can be defined by implication and negation, so that a system based on
these terms may be called “semantically complete”.

Not all of these functions are of equal importance. We shall consider in the sequel
only those functions that have a corresponding term in the ordinary language, and
may convey for this reason some new intuitive information. There are mainly four such
functions, all of two arguments: alternation, conjunction, equivalence and disjunction.
As all these functions have to be defined by our primitive terms, implication and ne-
gation, some preliminary remarks about definitions are necessary.

I agree with Principia mathematica that “a definition is a declaration that a certain
newly-introduced symbol or combination of symbols is to mean the same as a
certain other combination of symbols of which the meaning is already known”.
Every definition consists therefore of two parts: the definiendum and the definiens. The
definiendum contains the newly—introduced symbol, the definiens is a combination of
symbols already known. The authors of Principia express a definition by putting the
definiendum to the left and the definiens to the right, with the sign “=" between, and the
letters “Df” to the right of the definiens. The scheme of definitions accepted in Principia
looks therefore thus:

(@) A=BDf,
and has the sense: “A means by definition the same as B”. As A means the same as B,
we may everywhere replace A by B, and conversely B by A, so that, as the authors of
Principia say, “theoretically, it is unnecessary ever to give a definition: we might always
use the definiens instead”.

The above method of writing down definitions has one disadvantage: it introduces
into the system a new constant term, that of “definitional equality”. It seems that the
authors of Principia have felt this difficulty, as they would not include definitions into
their system, saying “that a definition is, strictly speaking, no part of the subject it
which it occurs”. “Moreover”, they continue, a definition “is not true or false, being
the expression of a volition, not of a proposition”. I cannot agree with the last two
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statements. Although the sentence “A means by definition the same as B” may be
the result of a volition, nevertheless it is a proposition concerning the terms A and
B, and like every proposition must be either true or false. On the other hand, as the
authors of Principia admit themselves, “the definitions are what is most important, and
what most deserves the reader’s prolonged attention”, and consequently cannot be
excluded from the system. If we want therefore not to encumber the system with a new
primitive term, we must look for another method of expressing definitions.

There exists such other method: we may employ equivalence to denote the relation
between the definiens and the definiendum. Equivalence is a function of the theory of
deduction, whereas the sign “= Df” accepted in Principia does not denote a function
of our theory. But equivalence is not a primitive term of the C-N-logic, it must
be first defined. So would arise a vicious circle, and consequently this way is also
impassable.

I found a third method which avoids the above difficulties. I do not introduce a new
constant term in order to express definitions, but a new kind of variable which I shall
later use to extend the theory of deduction. It is a variable functor of one propositional
expression denoted by 8. dp represents any propositional expression containing p, for
instance Cpg, Cpp, p, and so on. 8 is a substitution-variable, and in order to obtain
from dp the expression Cpg I write 8/ C'g, where the apostrophy “” denotes an empty
place that has to be filled up by the argument of 8. In a similar way I get from &p the
expression Cpp by the substitution 8/C”, and p by the substitution 8/’. A definition
expressed by means of  has the form:

(b) COADB.

From this form we get without a new thesis, only by substitution and detachment the
converse implication:

(c) C3BBA.

The proof of this assertion is instructive, as it shows how works the rule of substitution
for &:
(b) 8/Cd'8A ™ (d)
(d) CCOABACHBBA
(b) 8/CCdAH COBBA * C(d)-C(b)—(c)

(c) COBBA.

C8ASB means that A — wherever it occurs — may be replaced by B, and likewise
C8B8A means that B— wherever it occurs — may be replaced by A. It does not matter
whether A is the definiens and B the definiendum, or conversely. I shall write the definiens
in the first place, and the definiendum in the second. Plenty of examples given in the
next sections will explain the matter thoroughly.

26. The definition of alternation

I mean by an “alternation” a combination of two propositions p and 4 of the form:
“either p or ¢”, where the words “either-or” (“either” may be omitted) have to be
interpreted in the non—exclusive sense. That means: an alternation is true, when at
least one of its components, p or g, is true (they may be both true), and it is false,
only when both its components are false. I quote for explanation an example given by
Keynes: “He has either used bad text-books or he has been badly taught”. It is plain
that the components of this alternation do not exclude each other.

There are two possible definitions of the alternation on the basis of the terms C and
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N. In the definiens of one of them, there occur both functors C and N, in the other only
- I begin with the first definition which is more intuitive, than the second. It runs:
(26.1) CCNpgdApy.
The newly-introduced symbol is A (alternation). Apq means in words: “(either) p or g”.
The definition states that CNpg may everywhere be replaced by Apg, and consequently
Apg may everywhere be replaced by CNpg, because from (26.1) follows the converse
mnplication according to the scheme of the foregoing section, thus:
(26.1) 8/ C8'8CNpg * (26.2)
(26.2) COCOCNpgdCNpgCdApgdCNpg
(26.1) 8/ CCOCNpqd' CdApgdCNpq * C(26.2)-C(26.1)-(26.3)

(26.3) COApgdCNpq.

Since CNpg may everywhere be replaced by Apg, and conversely Apq by CNpg, Apg
means the same as CNpg, or in words: “p or g” means the same as “if not-p, then g”.
From the definition (26.1) and its complement (26.3) we get by a simple substitution,
Le. by omission of §, the theses:
(26.1) 8/ * (26.4)
(26.4) CCNpgApq
(26.3) 8/’ * (26.5)

(26.5) CApqCNpg.

Thesis (26.5) lies at the bottom of Duns Scotus’ argument quotet in section 18. He
correctly derives from the premisses: “either Socrates is or the stick stands in the corner
1Apg)”, and “Socrates is not (Np)”, the conclusion (g): “the stick stands in the corner”.

The second definition runs:

(26.6) C8CCpqqdApg.

According to this definition Apg means the same as CCpqq. This definition is not so
dlear, as the first. It may be explained as follows: The expressions CCpgq and Apg have
the same meaning as they always are either both true, or both false. If g is true, then
Apq is true, since an alternation is true when one of its components is true, and CCpgq
is true according to the scholastic principle: verum sequitur ad quodlibet. If q is false and
r is true, then Apy is true, but Cpq is false, and therefore CCpgq is true accordinig to
another scholastic principle: ad falsum sequitur quodlibet. If q is false and p is false, then
Apg is false, since an alternation is false when both its components are false, and CCpgq
is false, because Cpyq is true according to the second scholastic principle and ¢ is false.
From the definition (26.6) and its complement:

(26.7) CoApgdCCpyq

we get the following two theses:
(26.6) &/ * (26.8)
(26.8) CCCpqgApq
(26.7) 8/ * (26.9)

(26.9) CApqCCpqq.

These theses can be derived form (26.4) and (26.5) by means of some principles already
known to us:

(11.1) CCpgCCqrCpr

(18.4) CCCpqrCNpr

(18.4) r/q* (26.10)
(26.10) CCCpqqCNpq
(11.1) p/ CCpqq, g/ CNpg, r/ Apg * C(26.10)-C(26.4)—(26.8)
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(26.8) CCCpqqApq

(24.4) CCNpgCCpqq
(11.1) p/ Apg, g/ CNpg, v/ CCpgq * C(26.5)-C(24.4)-(26.9)

(26.9) CApgCCpqq.

In a subsequent part of this work I shall introduce the variable functor d not only into
definitions, but into the whole theory of deduction. Then I shall prove the following
most important thesis:

(26.11) CCpqCCqpCdpdg.

For the moment the reader must take this thesis for granted. By means of (26.11) we
may deduce the definition (26.6) from (26.3) and (26.9):

(26.11) p/ CCpaqq, 9/ Apg * C(26.8)-C(26.9)—(26.6)

(26.6) COCCpqqdApg.

In the same way we may deduce by means of (26.11) the definition (26.1) from (26.4)
and (26.5):
(26.11) p/CNpgq, g/ Apq * C(26.4)-C(26.5)(26.1)

(26.1) COCNpqdApg.

We see by these examples that our definitions expressed by means of d are equivalent
to two implications without 8, converse to each other.

27. The most important C-A-theses

All the theses of this section are simple translations of some C-N-theses obtained by
help of the definition (26.1). We get immediately:

(19.1) CCNppp

(26.1)8/C'p, g/p* (27.1)

(27.1) CAppp.

Thesis (27.1) is called in Principia mathematica the “principle of tautology”.
“Tautology” means “saying the same thing twice”. Saying “p or p” we say p twice; it
means the same, as to say “p”, for “p or p” is equivalent to “p”. The converse implication
to (27.1), CpApp, may be proved as follows:

(18.1) CpCNpgq

(26.1) 8/Cp’ * (27.2)

(27.2) CpApq

(27.2) q/p *(27.3)

(27.3) CpApp.

CpApp gives together with CAppp the conclusion CdAppdp, and this conclusion states
that “p or p” means the same as “p”. The name of tautology given to thesis (27.2) seems
to be justified.

Some authors, however, employ the word “tautology” in a sense that is not only
not justified, but even misleading. They call all the theses of the theory of deduction
“tautologies” connecting with this term certain bad philosophical speculations. They
say, for instance, that the proposition “it is raining” conveys an information about an
actual state of things, and so does the proposition “it is not raining”. But the proposition
“either it is raining or it is not raining” which is a substitution of the logical principle
of excluded middle, does not convey any information at all, it is not meaningless
indeed but empty, just a “tautulogy” like all logical laws. The principle of excluded
middle which has the form ApNp is a thesis of our system, but I cannot understand
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why itis called a tautology. It does not say the same thing twice. The mistake to call it a
tautology arose perhaps by a psychological association; who thinks that logical laws do
not convey any real information, may them call tautologies, as saying the same thing
twice does not convey a new information too. But it is wrong to expect that logical laws
should give informations about an actual state of things, they are instruments of proof,
not of experimental research. Moreover they are by no means empty, as they precise
the meaning of some very important logical functors. It seems to me that all this talk
about tautologies is but an attempt to reintroduce into logic under another name the
old Kantian distinction between “analytic” and “synthetic judgements”, and to show
that logical laws are all analytic. This Kantian distinction, however, is of no importance
for our system of logic, as it can be applied only to propositions with a subject and
predicate. Theses of the theory of deduction have neither a subject nor a predicate, and
the question whether they are analytic or synthetic is therefore futile.
Let us now derive some other C-A-theses:
(10.1) CpCqp
(10.1) p/q, q/Np * (27 .4)
(27.4) CqCNpq
(26.1) 8/ Cq * C(27.4)-(27 5)
(27.5) CqApq.
Thesis (27.5) is called in Principia the “principle of addition”, because it states, as
the authors say, “that if a proposition is true, any alternative may be added without
making it false”. For the same reason thesis (27.2) nay be called by the same name.
Duns Scotus employs this principle in his argument, when he says that from the
proposition “Socrates is” follows the alternation “either Socrates is or the stick stands
in the corner”.
(21.3) CCNpqCNgp
(26.1) 8/ C’'CNgp * C(21.3)~(27.6)
(27.6) CApqCNgp
(26.1) 8/CApq', p/q, q/p* C(27.6)-(27.7)
(27.7) CApgAqgp.
Thesis (27.7) is called in Principia the “principle of permutation”, because it states, as
the authors say, the “permutative law for logical addition”. Alternation is sometimes
called “logical addition” in analogy to algebraical addition. This dates from the time
when algebraical tendencies were prevailing in symbolic logic. It must be stressed that
such loose analogies are to be rejected, as logic is not mathematics, and has its own
problems and methods.
{(12.1) CCpCqrCqCpr
(12.1) p/Np, g/ Nq * (27.8)
(27.8) CCNpCNgrCNgCNpr
(26.1) 8/ C'CNgrCNpr, g/ CNgr * C(27.8)—(27.9)
(27.9) CApCNgrCNgCNpr
(26.1) 6/ CAp"CNgCNpr, p/q, q/1 * C(27.9)-(27.10)
(27.10) CApAgrCNgCNpr
(26.1) 8/ CApAqr’, p/ 4, 4/ CNpr * C(27.10)~(27.11)
(27.11) CApAqrAqCNp
(26.1) 3/ CApAqrAq, g/r* C(27.11)~(27.12)
(27.12) CApAqrAqApr
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Thesis (27.12) is called in Principia the “associative principle”, again in analogy to the
algebraical addition. It is a “primitive proposition” in Principia, i.e. an axiom, like the
previous theses (27.1), (27.5), (27.7) and the next thesis (27.16). The authors explain that
the proposition:
(27.13) CApAqrAApgr
which would be the natural form for the associative law, has less deductive power, and
is therefore not taken as a primitive proposition. The importance of (27.12) is of a more
historical than systematical nature.
(11.9) CCqrCCpqCpr
(11.9) p/ Np * (27.14)
(27.14) CCqrCCNpqCNpr
(26.1) 8/ CCqrC’CNpr * C(27.14)~(27.15)
(27.15) CCqrCApqCNpr
(26.1) 8/ CCqrCApq’, q/r * C(27.15)~(27.16)
(27.16) CCqrCApgApr
Thesis (27.16) is called in Principia the “principle of summation”, and is explained as
follows: “In animplication, an alternative may be added to both premiss and conclusion
without impairing the truth of the implication”.
The last three C-A-theses, also very important, are not to be found in Principia:
(18.3) CCCNpqgrCpr
(26.1) 8/CC'rCpr * C(18.3)-(27.17)
(27.17) CCApgrCpr
(13.8) CCCqprCqr )
(13.8) g/Np, p/q * (27.18)
(27.18) CCCNpgrCqr
(26.1) 8/ CC’rCqr * C(27.18)—(27.19)
(27.19) CCApqrCyar
(24.5) CCprCCqrCCNpgr
(26.1) 8/ CCprCCqrC'r * C(27.19)27.20)
(27.20) CCprCCqrCApgr
Theses (27.17), (27.18) and (27.20) form an organic whole, like theses (18.4), (24.10) and
(24.6) quoted in section 24. In a system of theory of deduction based on A and N as
primitive terms they may replace the five axioms given in Principia mathematica.

28. The system of axioms in Principia mathematica 4

The system of theory of deduction set forth in Principia is based on A and N as
two primitive terms. It is semantically complete, for the C~-N-system is semantically
complete, and C can be defined by A and N. This definition is put on the head of the
system, as the axioms are expressed not in primitive terms A and N, but in A and C.
The system consists therefore of one definition and five axioms. The definition reads in
symbols (the symbolism is mine):

(28.1) COANpqdCpyg.
In words: ““if p, then 4” means the same as “either not-p or 4””. The five axioms are:
(27.1) CAppy the principle of tautology
(27.5) CqApg the principle of addition
(27.7) CApgAqp the principle of permutation

(27.11) CApAqrAqApr  the associative principle
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(27.16) CCqrCApgApr  the principle of summation

It is, of course, not an error to employ a defined term in the axioms of a system, but
it is more elegant to formulate the axioms in primitive terms, and not to begin with a
definition. Moreover, implication is the most natural primitive term of the theory of
deduction, because it is connected with the rule of detachment, and should therefore
not be replaced by alternation. From this point of view the systems of Frege or Hilbert,
being based on implication and negation, must be preferred. Besides, the C-N-systems
set forth by myself consist of fewer axioms, and are consequently simpler. In my
opinion, the system of theory of deduction, as exposed in Principia, is noteworthy
today only from the historical standpoint.

The system of Principia is not independent. It is a strange coincidence that each
of the historically important systems of the theory of deduction, that of Frege, of
Hilbert and of Russell, contains one superfluous axiom. The reason is that proofs of
independence in logic were not known to the authors of those systems, and, as we read
in Principia, the recognized methods of proving independence were not applicable,
without reserve, to fundamentals. A method suitable for this purpose was published
in 1926 by Bernays who proved the associative principle is derivable from the other
principles of Principia, whereas the remaining axioms are independent of each other.
The same results and by the same methods were obtained by myself independently of
Bernays, and were published before Bernays in 1925, but without proof.

I shall now show how axiom (27.11), i.e. the associative principle can be deduced
from the definition (28.1) and the other axioms given in Principia.

(27.16) p/ Np * (28.2)
(28.2) CCqrCANpgANpr

(28.1) 8/CCqrC’ANpr * C(28.2)—(28.3)
(28.3) CCgrCCpqANpr

(28.1) 8/ CCqrCCpq’, q/r * C(28.3)(28.4)
(28.4) CCqrCCpqCpr

(28.4) 9/ Apg, v/ Agp, p/ q * C(27.7)-C(27.5)—(28.5)
(28.5) CqAqp

(28.5)q/p, p/r* (28.6)
(28.6) CpCpr

(27.5) q/ Apr, p/q * (28.7)
(28.7) CAprAqApr

(28.4) q/ Apr, r]/ AqApr * C(28.7)-C(28.6)-(28.8)
(28.8) CpAgApr

(27.5) q/r * (28.9)
(28.9) CrApr

(27.16) g/, v/ Apr, p/g * C(28.9)-(28.10)
(28.10) CAgqrAqApr

(27.16) q/ Agr, v/ AgApr * C(28.10)—(28.11)
(28.11) CApAqrApAqApr

(27.16) q/p, r/ AqApr, p/ AgApr * C(28.8)-(28.12)
(28.12) CAAqAprpAAqAprAqApr

(28.4) q/ App, r/p, p/gq * C(27.1)(28.13)
(28.13) CCqAppCqp

(28.13) g/ AAqAprp, p/ AqApr * C(28.12)—(28.14)
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(28.14) CAAqAprpAqApr
(27.7) q/ AgApr * (28.15)
(28.15) CApAqAprAAqAprp
(28.4) q/ AAqAprp, r[ AqApr, p/ ApAgApr ™
C(28.14)-C(28.15)—(28.16)
(28.16) CApAqAprAgqApr
(28.4) q/ ApAqApr, r/ AqApr, p| ApAqr * C(28.16)-C(28.11)~(28.17)
(28.17) CApAqrAqApr
The system of axioms of Principia can be replaced by the following set of axioms:
(27.17) CCApgrCpr
(27.19) CCApqrCqr
(27.20) CCprCCqrCApgr,
which forms an organic whole. We easily get from this set by the substitution p/Np
and by help of the definition:
(28.1) COANpgdCpg
the theses:
(18.4) CCCpgqrCNpr
(24.10) CCCpqrCqr
(24.6) CCNprCCqrCCpgr,
which can be taken as basis of the C-N-logic.

29. The principle of excluded middle
This principle deserves a special consideration. It is not a C~-N-, but a A-N-thesis,
and can be deduced from the principle of identity:
(9.1) Cpp
(9.1) p/Np* (29.1)

(29.1) CNpNp

(27.1) COCNpgdApg definition of Apgq
(27.1) 8/, g/ Np * C(29.1)~(29.2)

(29.2.) ApNp principle of excluded middle.

In words “either p or not p”, According to an old philosophic doctrine which persists
till today, the principle of excluded middle is held to belong with the principle of
identity and the principle of excluded contradiction to the triplet of the so—called
“fundamental laws of thought”. Philosophers are seldom trained in exact thinking,
and their opinions are seldom right. The principle of excluded middle is not a law of
thought as no logical principle is a law of thought, and it is not a fundamental law,
as it can be derived from other principles, which have therefore a better claim to be
regarded as fundamental.

There exists, however, a principle which being really fundamental is often mixed
up with the principle of excluded middle. It is a pity that not only philosophers, but
also some logicians are sometimes careless in their expressions. So we may read, for
instance, in Principia the following translation in words of the definition of implication:
“"p implies g” is to be defined to mean “either p is false or g is true””. The great Polish
logician, S. Leéniewski, one of the most exact thinkers I ever met, justly criticises such
expressions. The symbolic expression ANpg (you can take the symbols of Principia
instead) means only “either not—p or 4", but never means “either p is false or g is true”.
The so—called “truth-values”, i.e. truth and falsity, are not introduced as logical terms
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into the system of Principia. “q” and “g is true” are different expressions, and so are
“not-p” and “p is false”. Putting p for g in the above alternation we get an apparently
true statement “either p is false or p is true”, because it has to mean the same, as the
true proposition “p implies p”. If this statement is true, it must be true for all p, so
that there may be said: “Every proposition is either true or false”. This last sentence
embodies the so—called “principle of bivalence”, which states that there are only two
truth values, truth and falsity. We shall later see that the principle of bivalence is the
deepest fundamental of our whole logic, and should not be mixed up with the principle
of excluded middle.

Aristotle who first formulated the principle of excluded middle seems to accept in
a very interesting chapter of his Perilermen|elias that in propositions referring to future
contingent facts neither part of a contradiction is true or false. Suppose that a naval
battle is such a future contingent fact. Aristotle says that the proposition “a naval battle
will happen tomorrow” is today neither true nor false. For if it is true today, the naval
battle must happen tomorrow, and if it is false today, the naval battle cannot happen
tomorrow. In both cases the fact referred to ceases to be contingent, as contingent facts
may but must not happen. Aristotle therefore seems to deny the principle of bivalence
for propositions referring to future contingent facts. But he does not deny the principle
of excluded middle for these facts, because he says explicitly that the proposition “a
naval battle will happen tomorrow or it will not happen” is necessarily true.

Aristotle’s indeterministic opinion about future contingent facts found followers
among the Epicureans. There exists in Cicero’s fragments De fato a passage on this
subject very important for the history of logic. Of two contradictory propositions,
Cicero says, one must be true, against Epicurus, and the other false; so it was true
before all centuries that “Philoctetes will be healed”, and it was false that “he will not
be healed”. Unless we liked to follow the opinion of the Epicureans who say that such
propositions are neither true nor false; or, since to say this is a shame, they say, what
is more shamless, that the disjunction formed of such propositions is true, whereas
neither of its components is true. Cicero defeats this last opinion as unreasonable,
and adheres to the principle of bivalence stated explicitly by Chrysippus that every
proposition must be either true or false.

For a student of modern symbolic logic there is highly interesting to find in
Cicero’s works an opinion which is now shared by a large school of the so—called
“intuitionist logic”. Cicero regards as shamle]less to contend that a disjunction, or
rather an alternation, of contradictories, i.e. a proposition of the form “p or not-p” may
be true without having a true component. The same is maintained by Brouwer and
Heyting, and their followers, the intuitionists. I shall later expound the intuitionist
logic in a special section. For the moment it suffices to know, that the intuitionists
accept as C-axioms the axioms of the positive logic, as C-N-axioms the theses
CpCNpq and CCpgCCpNgNp (or CCpNpNp), as A-axioms the theses CpApg, C4Apq and
CCprCCqrCApgr. A is a primitive term like C and N, for the definitions of A by means
of C and N, and of C, are not recognized by them. The principle of excluded middle
ApNp is verified only when either p is a true and asserted proposition, or Np. Suppose
that a is asserted: we get AaNa from CpApg by the substitution p/a, g/Na and by
detachment; when Na is asserted, we get AaNa from CqApq by the substitution 4/ Na,
q/a, and by detachment. ApNp is not generally true, because neither p can be asserted
being a variable, nor Np. This reminds us of Cicero who feels that a proposition of the
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form ApNp should be rejected, when neither of its components is true.

Heyting who has formalized the intuitionist logic according to the ideas of Brouwer,
gives a matrix in order to show that ApNp is independent of the axioms of the
intuitionist logic. The axioms of the positive logic are verified by this matrix, the theses
CpCNpq and CCpgCCpNgNp are verified too, and so are the A-axioms, CpApq, CqApg,
and CCprCCqrCApgr. ApNp is falsified, for we have for p/2: A2N2 = A23 = 2. Also
falsified are the theses: CCCpgpp (for p/2, ¢/ 3), CCNppp (for p/2), CCNpgCNgp (for p/2,
4/3), CCNpNgCqp (for p/2, g/1), CNNpp (for p/2), and CCpqCCNpgq (for p/2, q/2).
All these theses are rejected by the intuitionists. The definition (26.1) COCNpgdApq is
falsified too, for we get from it by the substitution 8/’ the thesis CCNpgApq, and this
thesis gives for p/2, q/3: CCN23A23 = CC322 = C12 = 2. In a similar way we get from
the definition (26.6) COCCpgqdApg the thesis CCCpggApgq, which is falsified for p/2,
q/3.

C 1 2 3 N
*1 1 2 3 3
2 1 1 3 3
3 1 1 1 1

A 1 2 3

1 1 1 1

2 1 2 2

3 1 2 3

M

14

Not only ApNp is not admitted by the intuitionists, but no alternation at all is
admitted by then which does not consists of at least one asserted component. In the
ordinary theory of deduction we can prove that ApCpq is a thesis, thus:

The premises:

(11.1) CCpgCCqrCpr

(18.2) CNpCpg

(24.1) CCpgCCNpgq

(27.2) CpApg

(27.5) CqApq

The deduction:

(27.2) g/ Cpq *(29.3)
(29.3) CpApCpq

(27.5) g/ Cpg * (29.4)
(29.4) CCpgApCpq

(11.1) p/Np, q/ Cpg, r/ ApCpq * C(18.2)-C(29.4)-(29.5)
(29.5) CNpApCpq

(24.1) g/ ApCpq * C(29.3)-C(29.5)~(29.6)

(29.6) ApCpgq.

Thesis ApCpg means: “p or (if p, then ¢)”. Neither of its components can be asserted, as
neither of them is a thesis; ApCpg has to be rejected, as shows the matrix M, (take p/2,
q/3). As a matter of fact, (29.6) was proved by help of (24.1) which is rejected by the
intuitionists. By adding of (29.6) to the axioms of the intuitionist logic, we get the principle
of Peirce CCCpqpp from which follows CCNppp and the whole theory of deduction.
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ACpqCqp is another thesis which does not belong to the intuitionist logic, although
it is verified by the matrix M,, given by Heyting. The matrix of Heyting is not an
adequate matrix of the intuitionist logic. A matrix is called “adequate”, when it
verifies only those theses which are consequences of a given set of axioms verified by
it. The adequate matrix of the intuitionist logic is infinite, as was shown by Gédel and
Jaskowski.

The idea that an alternation should be asserted only when at least one of its
components is asserted, is in my opinion the most interesting and important feature of
the intuitionist logic. Closely connected with this idea is the intuitionist interpretation
of existential propositions which, according to the intuitionists, should be built up
upon constructions of mathematical facts, and not upon arguments deducing the
opposite statements to an absurdity. The whole problem is very difficult, and requires
a careful analysis of many ideas, among others of the idea of “assertion”.

D. Conjunction

30. The definition of conjunction

[ mean by a conjunction the combination of two propositions by means of the word
“and”. The conjunction “p and ¢” is true only when both its components are true, in
all the other cases it is false. The following definition by C and N seems not to be very
intuitive:

(30.1) CBNCpNgdKpq.
The newly-introduced term is K, “and”. The definiendum Kpq means “p and q”. In
order to explain the meaning of the definiens NCpNg, let us first see what means this
expression wthout N. CpNg, or “if p, then not—4”, means roughly speaking, that p and
q exclude each other not being together true. The negation of CpNg, i.e. NCpNg, means
therefore that p and g do not exclude each other, and are together true.

There is another more intuitive definition of Kpg. For the first p in (30.1) we may
write NNp, as NNp means the same as p. We have therefore:

(30.2) CANCNNpNgdKpg,

or with respect to the definition (26.1) of Apg:

(30.3) CONANpNgdKpq.
According to this definition “p and 4" means the same as “not-(either not—p or not—4)”.
The definiens is true, when the expression in brackets is false, and this expression is
false, when both not—p and not— are false, or both p and g are true. Instead of defining
Kby A and N, we could define A by K and N, thus:

(30.4) CONKNpNgdApg.
In words: “p or g[”] means the same as “not—(not-p and not—4)”. In symbols:

(30.3) Kpg means the same as NANpNg,
and

(30.4) Apq means the same as ~ NKNpNjy.
From these definitions and their complements:

(30.5) CdKpgdNANpNg
and

(30.6) CdApgdNKNpNg,
we get by the substitution 8/ the following, four theses:
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(30.7) CNANpNgKpq

(30.8) CKpgNANpNg

(30.9) CNKNpNgApq

(30.10) CApgNKNpNg,
which are sometimes called, not rightly, the laws of De Morgan. De Morgan was an
outstandirg English logician, but the logical laws discovered by him and called after his
name do not belong to the theory of propositions, but to the theory of classes. On the
other hand, theses (30.7) till (30.10) were already known to the mediaeval logicians. We
read, for instance, in the conmentary of Versorius on the classical textbook of mediaeval
logic of Petrus Hispanus that “Copulativa et disiunctiva de partibus contradicentibus
contradicunt”. Copulativa means conjunction, “p and g”, disiunctiva — alternation, “p
or g”. According to this text, “p and g” and “not-p or not—4” are contradictory to each
ofher, and consequently “p and 4" is equivalent to the negation of “not-p or not-4".
Similarly “p or q” is equivalent to the negation of “not-p and not—4”. The same idea
is expressed more exactly by Ockham: “Opposita contradictoria disiunctivae est una
Copulativa ex contradictoribus partium ipsius disiunctivae”, i.e. the contradictory of “p or
q” is “not=p and not-g”. It is not known to me who first discovered these theses.

31. The most important C-K-theses
To the most important C~K-theses belong the following three:
(31.1) CKpgp
(31.2) CKpgq
(31.3) CpCqKpgq.
In words: “If p and g, then p”, “if p and g, then ¢”, “if p, then (if 4, then p and g)”. The first
two theses are called in Principia, like thesis CpCqp, the “principles of simplification”. 1
shall derive all the three from some C- and C—-K-theses by help of the definition (30.1).
The premisses:
(10.1) CpCqp
(11.9) CCqrCCpqCpr
(12.5) CpCCpaqq
(18.2) CNpCpq
(21.2) CCpNgCqNp
(21.3) CCNpgCNgp
(30.1) CANCpNgdKpq
The deduction:
(18.2) g/Ng * (31.4)
(31.4) CNpCpNg
(18.1)p/Ng, q/p * (31.5)
(31.5) CNqCpNg
(12.5) g/ Ng * (31.6)
(31.6) CpCCpNgNg
(11.9) g/ CpNg, r/ CgNp, p/r * C(21.2)-(31.7)
(31.7) CCrCpNgCrCqNp
(21.3) g/CpNg * C(31.4)—(31.8)
(31.8) CNCpNgp
(21.3) p/q, g/ CpNg * C(31.5)~(31.9)
(31.9) CNCpNgq
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(31.7) r/p, p/ CpNg * C(31.6)—(31.10)
(31.10) CpCgNCpNg
(30.1) 5/C'p * C(31.8)-(31.1)
(31.1) CKpgp
(30.1) 5/ C'g * C(31.9)~(31.2)
(31.2) CKpqq
(30.1) 8/ CpCq’ * C(31.10)~(31.3)
(31.3) CpCqKpgq
One of my ancient pupils, Sobocifski, has proved that the above three C=K~theses
combined with the implicational logic which can be built up on axiom (16.1), are a
sufficient basis for all the C-K-theses. I shall therefore derive the next theses without
help of the definition (30.1).
The following thesis was called by Peano, according to Principia, the “principle of
composition”:
(31.14) CCpqCCprCpKyr.
In words: “If (if p, then ¢), then if (if p, then r), then (if p, then g and r)”. The principle is
evidently true. I take as premisses of the proof the theses:
(11.9) CCqrCCpqCpr
(13.1) CCpCqrCCpqCpr
(31.3) CpCqKpq.
The proof:
(313)p/q.q/r* (31.11)
(31.11) CqCrKgr
(11.9) r/CrKgr * C(31.11)—(31.12)
(31.12) CCpqCpCrKqr
(11.9) g/ CpCqr, v/ CCpqCpr, p/s * C(13.1)«31.13)
(31.13) CCsCpCqrCsCCpqCpr
(31.13) s/Cpq, q/r, r/ Kgr * C(31.12)~(31.14)
(31.14) CCpgCCprCpKyr.
The next thesis:
(31.15) CKpgKqgp
is the “commutative law” for conjunction or, as the authors of Principia say, for “logical
multiplication”. By an analogy to algebraic operations conjunction is sometimes called
“logical multiplication”, as alternation is called “logical addition”. As this analogy
does not go far enough, it should be rather dropped.
The proof of (31.15) runs:
(31.14) p/Kpg, r/ p * C(31.2)-C(31.1)~(31.15)
(31.15) CKpgKqp.
Closely connected with (31.15) is the next thesis:
(31.18) CCpqCKprKgr,
called by Peano, according to Principia, the “principle of the factor”. It is explained in
Principia thus: “Both sides of an implication may be multiplied by a common factor”.
The proof requires as premisses the principle of commutation (12.1) and the theses
(31.2) and (31.14):
(31.2) q/r ™ (31.16)
(31.16) CKprr
(12.1) p/Cpg, q/ Cpr, r/ CpKgr * C(31.14)—(31.17)
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(31.17) CCprCCpqCpKgr
(31.17) p/ Kpr * C(31.16)~(31.18)

(31.18) CCpqgCKprKar.

The last two theses I want to mention here are most frequently used:

(31.21) CCpCqrCKpqr

(31.23) CCKpqrCpCqr
In words: “If [if p, then (if g, then )], then (if p and g, then r)”; “if (if p and g, then r), then
lif p, then (if g, then r)]”. Both theses are implications which are converse to each other
and give together an equivalence. The first was called by Peano, according to Principia,
the “principle of importation”, the second the “principle of exportation”. In the first
thesis we “import” g into the antecedent of CpCqr forming CKpqr, in the second we

“export” ¢ from the antecedent of CKpgr forming CpCqr. Theses (31.21) and (31.23) can
be proved from (31.1), (31.2) and (31.3) by the premisses:

(11.1) CCpgCCqrCpr

(11.11) CCqrCCsCpqCsCpr

(12.1) CCpCqrCqCpr

(31.14) CCsCpCqrCsCCpqCpr

(11.1) p/Kpg, q/p, r/ Cgr * C(31.1)-(31.19)
(31.19) CCpCqrCKpgCqr
(31.14) s/ CpCqr, p/ Kpq * C(31.19)-(31.20)
(31.20) CCpCqrCCKpqqCKpqr
(12.1) p/CpCqr, q/ CKpqq, r/ CKpgr * C(31.20)-C(31.2)-(31.21)
(31.21) CCpCqrCKpgr
(12.1) p/ Cqr, g/ CsCpq, v/ CsCpr * C(11.11)~(31.22)
(31.22) CCsCpqCCqrCsCpr
(31.22) s/p, p/g, g/ Kpg * C(31.3)-(31.23)

(31.23) CCKpgrCpCar.

Theses (31.21) and (31.23) are very useful, when we want to reduce the number of
the antecedents in expressions of the form Ce,Ca,Cat,...Ca B. In expressions of this
form I call o, the first antecedent, o, the second antecedent o, the k-th antecedent. By
means of the principles of 1mportat1cm and exportation we easily can transform such
expressions into equivalent formulae with fewer antecedents. So is Ca,Co,Ca.,...Ca
equivalent to CKa. a,Ca.,...Ca_B, this last expression is equivalent to CKKu a,a,...Ca ﬁ,
and so on. These equwalences are needed, for instance, for the proof of the theorem
that all the antecedents of the expression Co,Ca,Ca,..Ca B are interchangeable. It
suffices to show for this purpose that any two consecutive antecedents, as a, , and
a,, are interchangeable. For o, and a,, this can be directly proved by the principle of
commutation; for a, and a, by the thesis CCa,Ca,Ca pCa Ca,Ca B which arises by
the application of the second form of the syllogism to the principle of commutation. In
the same way we could form the thesis CCa,Ca,Ca,Ca,pCa,Ca,Ca,Ca,B, and similar
theses for five and six antecedents, but it is impossible to write down such a thesis for
n antecedents, where # is any natural number. Applying theses (31.21) and (31.23) we
need for the proof of the above theorem only the principle of commutation and the
thesis:

(31.24) CCsCpCqrCsCqCpr.

In order to prove that &, , and a, are interchangeable, we transforn the expression
Ca,Ca,Ca,... Ca, Ca, ,Ca,...Ca, B by applying thesis (31.21) as many times as necessary
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into the conjunctional form CKya, ,Ca, Ca,...Ca B where y denotes the conjunction
of the antecedents o,~o, ; then we apply thesis (31.24) getting the expression CKya,_
Lo Ca, ,..Co, B, and by successive aplications of thesis (31.23) we obtain again the
purely implicational form Ca Ca,...Ca,_,Ca,Car, ,...Ca .

Thesis (31.21) is frequently used to transform implicational expressions into
conjunctional ones. So we get, for instance, from the syllogism CCpgCCqrCpr the form
CKCpqCqrCpr, and from CCqrCCpgCpr, the form CKCqrCprCpr. Theses:

(31.25) CKCpqCqrCpr
and

(31.26) CKCqrCpqCpr
which in Principia also are called the “principles of the syllogism”, are not so convenient,
as their implicational forms (11.1) and (11.9). If two premisses of the form Caf and
CBy are asserted, we obtain immediately by two detachments the conclusion Cay
using the implicational forms of the syllogism. When we only have to our disposition
the conjunctional forms, we must first prove by means of thesis (31.3) and by two
detachments the conjunction KCaBCBy, and then we may obtain the conclusion Cay
by a third detachment. Besides, when only Ca is asserted, we can deduce froim it by
(11.1) the consequence CCPrCar, and by (11.9) the consequence CCpapCpf, whereas
neither of these consequences can be obtained fron the conjunctional forms (31.25) and
(31.26).

32. The principle of excluded contradiction

According to Aristotle, the most fundamental principle of all is that two contradictory
propositions are not together true. This principle runs in symbols:

(32.1) NKpNp.

That means literally: “Not—(p and not-p)”. Thesis (32.1) is like the principle of
excluded middle not an axiom of our system. The authors of Principia have already
observed proving the “law of contradiction” that in spite of its fame they have found
few occasions for its use. It can be proved, curiously enough, on the basis of the first
principle of double negation and the definition of conjunction:

(20.1) CpNNp

(30.1) CONCpNgdKpg

(20.1) p/ CPNNp * C(20.1)~(32.2)

(32.2) NNCpNNp

(30.1) 8/N’, g/ Np * C(32.2)~(32.1)

(32.1) NKpNp.

On the basis of definition (30.1) NKpNp means the same as NNCpNNp. As it is plain
that this latter thesis, undetacheable like NKpNp, has no important consequences, the
principle of excluded contradiction is as axiom of no use whatever.

The importance falsely attributed to this principle belongs in fact to the principle
of Duns Scotus. As we know already; if two contradictory propositions were asserted
both, we could deduce from them by the principle of Duns Scotus any proposition. Let
us transform the first form of this principle:

(18.1) CpCNpq
by help of the principle of importation:

(31.21) CCpCqrCKpgr
into the conjunctional form:
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(31.21) q/Np, r/ q * C(18.1)~(32.3)

(32.3) CKpNpg.

Thesis (32.3) is an exact translation in symbols of the principle set forth by Duns
Scotus. A conjunction of two contradictories, like p and not-p, is called “contradictio
in forma”. The statement of Duns Scotus runs: Ad quamlibet propositionem implicanteim
contradictionem in forma sequitur quaelibet alia propositio in consequentia formali. The proof
of this statement, as given by Duns Scotus and expounded in section 18 in words, can
now be translated into symbols:

The supposition reads:

(I) KaNa (Socrates est et Socrates non est.)

The premisses are:

(31.1) CKpgp

(31.2) CKpgq

(27.2) CpApq

(26.5) CApgCNpq

The proof:

(31.1) p/a, g/ Na* C(H-IT)

(II) &

(31.2) p/ @, g/ No * C(IN)-(IIT)

(I11) No

(27.2) p/ a* CIDHIV)
(V) Aog
(26.5) p/[a] [*] CAV)-CIIN~V)

V) g (Baculus stat in angulo.)

This proof is correct, but it has one flaw: The supposition KaNa cannot be asserted,
because it is false, and to assert a false proposition is an error. This point will be
considered later, when we shall come to speak about the so—called “rejection”. For the
moment it will be instructive to compare the above argument of Duns Scotus with the
following flawles proof of the thesis (32.3).

The premisses are the same, as in Duns Scotus’ argument, but enforced by the
addition of two inplicational theses:

(11.1) CCpgCCqrCpr

(13.11) CCpCpqCpq.

The proof:

(31.1) g/ Np * (32.4)
(32.4) CKpNpp

(31.2) q/Np * (32.5)
(32.5) CKpNpNp

(11.1) p/KpNp, 4/p, v/ Apqg * C(32.4)-C(27.2)~(32.6)
(32.6) CKpNpApq

(11.1) p/ KpNp, 4/ Apg, r/ CNpg * C(32.6)-C(26.5)~(32.7)
(32.7) CKpNpCNpq

(11.1) p/KpNp, q/Np, r/q * C(32.5)-(32.8)
(32.8) CCNpgCKpNpg

(11.1) p/ KpNp, q/ CNpg, r/ CKpNpq * C(32.7)-C(32.8)~(32.9)
(32.9) CKpNpCKpNpg

(13.11) p/ KpNp * C(32.9)~(32.3)
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(32.3) CKpNpg. .

Thesis (32.3) can be obtained directly from the second form of the principle of Duns
Scotus and the principle of contradiction:

(18.2) CNpCpq

(32.1) NKpNp

(18.2) p/ KpNp * C(32.1)(32.3)

(32.3) CKpNpq.

The antecedent of thesis (32.3), KpNp, is obviously a false proposition, and entails
therefore any proposition according to the principle: ad falsum sequitur quodlibet. This
scholastic principle may contribute to the explanation, why so much importance is
still attached to the principle of contradiction in spite of its uselessness as axiom.
Every author of a deductive system is bound to prove that his system is consistent.
Consistency is frequently mixed up with non-contradiction; everybody therefore in
anxious to prove that his system does not imply two contradictory theses against the
principle of excluded contradiction. This principle seems thus to play an important
role in construction of deductive systems. It is true, in fact, that a consistent system is
not contradictory, and a contradictory system is not consistent. But non—contradiction
is a wider idea than consistency, and therefore not identical with it. There are not
contradictory systems which are inconsistent. Take for example a system of C-theses
(without N) based on the following two axioms:

(1) CpCagq

(II) CCpqCap.

It follows from these axioms:
(I) p/ CpCqq * C(D)~(I11)
(1) Cqq
(1) g/ Cqq * C(D-CAI)~(1V)

(Iv) p.

This system leads to a variable, like a contradictory system, and includes therefore
all significant C-expressions, among them the false ones too. Nevertheless it is not
contradictory, for it is impossible to construct in it two propositions of the form o and
No. N does not exists in it. Non-contradiction as criterion of consistency can be applied
only to systems with negation. What we want, however, when we are constructing a
deductive system, is to exclude from it all false propositions, and therefore we are so
anxious to exclude contradictories, because one of two contradictories must always
be false. But the exclusion of contradictories is not sufficient, as false theses may arise
in a system not only by accepting contradictory propositions. It was therefore a lucky
idea of the American logician E. Post to define a system as consistent which does not
include all its significant expressions. This definition of consistency is wider than the
usual definition by non-contradiction, and can be applied to all deductive systems.

Aristotie discusses at length the principle of excluded contradiction in the famous
Book T of his Metaphysics. The tremendous influence of this discussion is, in my
opinion, the reason that this principle was proclaimed as the most fundamental
basis of the human thught. It is a true principle of our two-valued logic, but it is far
less important than the principle of Duns Scotus or some other axioms of this logic.
We shall see later that by a slight modification of the functor N it will be possible to
construct a many—valued system of logic in which two centradictories may be together
true whereas the system is consistent in the sense of Post.
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33. K-N-theses and the intuitionist logic

The functors K nad N, like A and N, form a sufficiert semantic basis for the theory
of deduction, i.e. all the other functors of this theory can be defined by them. It suffices
for this purpose te show that C may be defined by K and N:

(33.1) CONKpNgdCpq.

According to this definition, “if p, then 4" means the same as “not—(p and not—q)”.
It seems that this evident connexion betweeen the functors K-N and C was known
to the Stoics, because we read in Cicero’s De fato that according to Chrysippus the
sentences: “si quis oriente Canicula natus est, is in mari non morietur” and “non: et natus est
is oriente Canicula et in mari morietur”, are equivalent. By means of definition (33.1) all
the C-N-theses can be translated into K-N-theses. The system K-N was axiomatized
by Sobocinski.

Godel observed that all the K-N-theses are true in the intuitionist logic. As we
already know, the intuitionist logic is only a proper part of the theory of deduction:
it can be based, as regards the C—theses, on the positive logic, i.e. on the principle of
simplification and the principle of Frege, and as regards the C-N-theses, on the principle
of Duns Scotus and either on the principle of destructive dillema CCpgCCpNgNp, or
the second principle of transposition CCpNgCqNp. The intuitionists accept besides as
C—A-axioms the theses CpApq, C4Apg and CCprCCqrCApgr, and as (-K-axioms the
theses CKpgp, CKpgq and CpCqKpq (or CCpgCCprCpKar). The functors C, N, A and K
are all primitive terms in the intuitionist logic, because none of them can be defined
by the others. The intuitionists reject the principie cf Peirce CCCpgqpp, the principle of
Clavius CCNppp, the second principle of double negation CNNpp, the fourth principle
of transposition CCNpNgCqp, and many other theses. The intuitionist logic being a part
of the ordinary system, is weaker than the theory of deduction. 1 shall prove, however,
this somewhat paradoxical theorem that the intuitionist logic, althought weaker than
the ordinary system includes as its consequence a system isomorphic to the whole
theory of deduction.

As premisses of my proof [ accept the following axioms of the intuitionist logic (I
omit the C—-A—axioms and the principle of Duns Scotus, as irrelevant for the proof):

(33.2) CpCqp (10.1)

(33.3) CCpCqrCCpqCpr (13.1)
(33.4) CKpgp (31.1)
(33.5) CKpgq (31.2)
(33.6) CpCqKpq (31.3)
(33.7) CCpNgCqNp (21.2)
From (33.2) and (33.3) follow the theses:
(33.8) Cpp (9.1)
(33.9) CpCCpqq (12.5)
(33.10) CCpCqrCqCpr (12.1)
(33.11) CCpgCCqrCpr (11.1)
(33.12) CCqrCCpqCpr, (11.9)

which can be easily proved on the ground of deductions expounded in section 13.
They belong all to positive, and therefore to intuitionist logic. From the axioms (33.4),
(33.5) and (33.6) we get the theses:

(33.13) CCpgCCprCpKqr (31.14)

(33.14) CKpgKqp (31.15)
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(33.15) CCpCqrCKpgr (31.21)

(33.16) CCKpgrCpCyr, (31.23)
as it was shown in section 31 by help of theses (11.1), (11.9), (11.11), (12.1) and (13.1)
which all belong to positive logic. I admit theses (33.8)-(33.16) without repeating their
proofs. The deduction which I give below consists of three parts: (A) I shall prove the
theses CCpgNKNg and CCpgNKNgp, (B) the theses NKNKppp and NKpNNKNpg, (C) the
thesis NKNKpNgNNKNKpgNNKpr.

(A)

(33.8) p/Ng * (33.17)
(33.17) CNgNg

(33.7) p/ Ng * C(33.17)~(33.18)
(33.18) C4yNNg

(33.7) p/Ng * (33.19)
(33.19) CCpNNGCNgNp

(33.12) r/ NNg * C(33.18)—(33.20)
(33.20) CCpgCpNNg

(33.11) p/ Cpq, q/ CpNNg, r/ CNgNp * €(33.20)-C(33.19)~(33.21)
(33.21) CCpgCNgNp

(33.12) ¢/Cpq, r/CNgNp, p/r * C(33.21)(33.22)
(33.22) CCrCpgCrCNgNp

(33.22) r/p, p/ Cpg * C(33.9)(33.23)
(33.23) CpCNgNCpq

(33.15) 9/ Ng, r/ NCpq * C(33.23)~(33.24)
(33.24) CKpNgNCpgq

(33.7) p/ KpNg, 4/ Cpq * C(33.24)~(33.25)
(33.25) CCpgNKpNg

(33.14) p/Nq, q/p * (33.26)
(33.26) CKNgpKpNg

(33.11) p/ KNgp, g/ KpNg, r/ NCpq * C(33.26)-C(33.24)~(33.27)
(33.27) CKNgpNCpgq

(33.7) p/KNgp, g/ Cpg * C(33.27)-(33.28)
(33.28) CCpgNKNgp.

(B)

(33.13) q¢/p, r/p * C(33.8)-C(33.8)~(33.29)
(33.29) CpKpp

(33.28) ¢/ Kpp * C(33.29)-(33.30)
(33.30) NKNKppp

(33.4) p/ Np * (33.31)
(33.31) CKKpgNp

(33.7) p/ KNpg, q/p * C(33.31)~(33.32)
(33.32) CyNKNpq

(33.25) g/ NKNpq * C(33.32)(33.33)
(33.33) NKpNNNKNpq.
(©

(33.22) v/ Cpg, p/ Ng, q/ Np * C(33.21)—(33.34)
(33.34) CCpqCNNpNNgq
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(33.12) 4/ Cpq, r/ CNNpNNg, p/r * C(33.34)—(33.35)

(33.35) CCrCpgCrCNNpNNg

(33.35) r/p. p/ g, q/ Kpg * C(33.6)—(33.36)
(33.36) CpCMgNNKpg

(33.10) g/ NNg, r/ NNKpg * C(33.36)~(33.37)""
(33.37) CNNgCpNNKpq

(33.12) g/ CpNg, r/ CgNp, p/r * C(33.37)(33.38)
(33.38) CCrCpNqCrCqNp

(33.38) r/KNg, 9/ NKpq * C(33.37)~(33.39)
(33.39) CNNgCNKpgNp

(33.22) r/NNg, p/ NKpg, g/ Np * C(33.39)-(33.40)
(33.40 ) CNNgCKNNpNNKpq

(33.10) p/NNg, q/ NNp, r[ NKpq * C(33.40)~(33.41)
(33.41) CNNpCNNgNNKpg

(33.15) p/NNp, q/ NNg, r/ NNKpq * C(33.41)-(33.42)
(33.42) CKNNpNNgNNKpgq.

(33.34) p/ Kpq * C(33.5)-(33.43)
(33.43) CNNKpgNNg

(33.11) p/ Kpg * C(33.5)~(33.44)
(33.44) CCqrCKpgr

(33.44) q/ NKpq, r/ NNg, p/ NNr * C(33.43)—(33.45)
(33.45) CKNNNNKpgNNg

(33.4) p/NNr, q/NNKpq * (33.46)
(33.46) CKNNrNNKpgNNr

(33.13) p/ KNNrNNKpgq, g/ NNr, r/NNg *

C(33.46)-C(33.45)—(33.47)

(33.47) CKNNrNNKpgKNNrNNg

(33.42) p/r * (33.48)
(33.48) CKNNrNNgNNKrq

(33.11) p/ KNNrNNKpg, g/ KNNrNNg, v/ NNKrq *

C(33.47)-C(33.43)-(33.49)

(33.49) CKNNrKNKpgNNKrg

(33.16) p/ NNr, g/ NNKpq, r/ NNKrq * C(33.49)(33.50)
(33.50) CNNrCNNKpgNNKrq

(33.10) p/NNv, q/ NNKpq, r/ NNKrg * C(33.50)-(33.51)
(33.51) CNNKpgCNNrNNKrg

(33.38) r/ NNKKpg, p/ NNr, q/ NKrg * C(33.51)-(33.52)
(33.52) CNNKpgCNKrgNNNr

(33.10) p/ NNKpq, ¢/ NKrg, r/ NNNr * C(33.52)(33.53)
(33.53) CNKrqCNNKpgNNNr

(33.15) p/ NKrg, g/ NNKpg, r/ NNNr * C(33.53)-(33.54)
(33.54) CKNKrgNNKpgNNNr

(33.34) p/Kpg, q/ p * C(33.4)-(33.55)
(33.55) CNNKpgNNp

(33.44) 9/ NNKpg, r/ NNp, p/ NKrq * C(33.55)-(33.56)
(33.56) CKNKrgNNKpgNNp



Theory of Deduction 67

(33.13) p/ KNKrgNNKpg, g/ NNp, r/ NNNr *
C(33.56)-C(33.54)(33.57)
(33.57) CKNKrgNNKpgKNNpNNN7
(33.42) p/Nr * (33.58)
(33.58) CKNNpNNNrNNKpNr
(33.11) p/ KNKrgNNKpg, g/ KNNpNNNr, r  NNKpNr *
C(33.57)-C(33.58)(33.59)
(33.59) CKNKrgNNKpgNNKpNr
(33.7) p/ KNKrgNNKpg, 4/ NKpNr * C(33.59)~(33.60)
(33.60) CNNpNrNKNKrgNNKpq
(33.60)7/q, q/r* (33.61)
(33.61) CNKpNgNKNKgqrNNKpr
(33.25) p/ NKpNg, g/ NKNKgrNNKpr * C(33.61)(33.62)
(33.62) NKNKpNgNNKNKgqrNNKpr
The three K-N-theses we got by this deduction, (33.30), (33.33) and (33.62), are too
general for our purpose. The special cases needed for our proof can be derived from
them by replacing some variables by their negations:
(33.30) p/Np * (33.63)
(33.63) NKNKNpNpNp
(33.33) p/ Ng * (33.64)
(33.64) NKpNNKNpNg
(33.62) r/Nr * (33.65)
(33.65) NKNKpNgNNKNKgNrNNKpNr.
Let us now introduce a definition for expressions of the form NKaNB. We cannot
use for this purpose the definition:
(33.1) CBNKpNgdCpg,
because a consequence of this definition:
(33.66) CNKpNqCpg,
does not belong to intuitionist logic. The matrix M,, of Heyting given in section 29
for C, N and A, and cmmpleted by K, as shown in M,, ,, verifies all the axioms of the
intuitionist logic (and some other theses not belonging to this logic), but does not verify
(33.66), because we have for p/1, 4/2: CNKIN2C12 = CNK132 =CN32=Cl12=2.

& 1 2 3 N
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2 1 1 3 3
3 1 5 1 1
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14.1
Nothing, however, can prevent us from introducing for sake of abbreviation an entirely
new functor, say G, and state the following definition:
(33.67) CANKpNgdGpq.
Applying this definition to theses (33.63), (33.64) and (33.65) we have:
(33.67) 8/ NK’'Np, p/ Np, g/ p * C(33.63)—(33.68)
(33.68) NKGNppNp
(33.67) 8/", p/ GNpp, q/p * C(33.68)-(33.69)
(33.69) GGNppp
(33.67) 8/ NKpN’, p/ Np * C(33.64)~(33.70)
(33.70) NKpNGNpq
(33.67) 8/, | GNpg * C(33.70)-(33.71)
(33.71) GpGNpq
(33.67) 8/ NK’NNKNKgNrNNKpNr * C(33.65)—(33.72)
(33.72) NKGpgNNKNKgNrNNKpNr .
(33.67) 8/ NKGpgNNK'NNKpNNpNr, 1/ 4, q/r* C(33.72)-(33.73)
(33.73) NKGpgNNKGgrNNKpNr
(33.67) 3/ NKGpgNNKGgrN’, g/ 1 * C(33.73)~(33.74)
(33.74) NKGpgNNKGqrNGpr
(33.67) 8/ NKGpgN’, p/ Gqr, q/ Gpr * C(33.74)-(33.75)
(33.75) NKGpgNGGqrGpr
(33.67) 8/, p/ Gpq, g/ GGqrGpr * C(33.75)-(33.76)
(33.76) GGpgGGqrGpr.
Let us now compare theses (33.76), (33.71) and (33.69) with the set of axioms (11.1),
(18.1) and (19.1) which I mentioned in section 19 as a sufficient basis of the whole

theory of deduction:
(11.1) CCpgCCqrCpr (33.76) GGpqGGqrGpr
(18.1) CpCNpg (33.71) GpGNpq
(19.1) CCNppp (33.69) GGNppp

Both sets are essentially identical, because it makes no difference whether we denote
the implicational functor by C or by G. To show therefore that the set with G is a
sufficient basis for the whole theory of deduction, we only have to prove that the rule of
detachment valid for C is also valid for G. This cannot be done immediately by a thesis
of the intuitionistic logic, but requires a special consideration. Thesis CNKpNgCpg or
CGpqCpq which would serve our purpose is not true in our system. We can prove,
however, a similar thesis, CNKpNgCpNNg:
(33.11) p/ 4, 4/ Npg, r/ CpNNKpq * C(33.18)-C(33.37)~(33.77)
(33.77) CqCpNNKpq
(33.10) p/g, q/p, r/NNKpg * C(33.77)-(33.78)
(33.78) CpCqNNKpq
(33.38) r/p, p/ 9, 4/ NKpq * C(33.78)—(33.79)
(33.79) CpCNKpqNgq
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(33.10) g/ NKpg, r/ Ng * C(33.79)-(33.80)

(33.80) CNKpqCpNg

(33.80) g/ Ng * (33.81)

(33.81) CNKpNqCpNNg.

From (33.81) we obtain further consequences taking as premiss thesis
CCqrCCsCpgCsCpr which results from the second form of the syllogism and belongs
to positive logic.

(33.82) CCqrCCsCpgCsCpr

(33.81) q/ Nq * (33.83)
(33.83) CNKpNNGCpNNNg

(33.21) p/q, g/ NNg * C(33.18)~(33.84)
(33.84) CNNNgNgq

(33.32) g/ NNNg, r/ Ng, s/ NKNNg * C(33.84)-C(33.83)(33.85)
(33.85) CNKpNNgCpNg

(33.85) g/ KqNr * (33.86)

(33.86) CNKpNNKgNrCpNKgNr

Let us now apply the definition (33.67) to the theses (33.81), (33.85) and (33.86):

(33.67) 8/ C'CpNNg * C(33.81)-(33.87)

(33.87) CGpgCpNNyg
(33.67) 8/C'CpNg, q/ Ng * C(33.85)—(33.88)

(33.88) CGpNgCpNyg
(33.67) 8/ CNKpN'Cy’, p/q. q/ r * C(33.86)~(33.89)

(33.89) CNKpNGqCpGgr
(33.67) 8/ C'CpGgqr, g/ Ggr * C(33.89)~(33.90)

(33.90) CGpGgrCpGar.

Supposing that both Gap and « are asserted we get from (33.81) by two detachmnents
the conclusion NNB. In a similar way, if GaNP and a are asserted, we get from (33.88)
as conclusion NB and if GaGPy and o, are asserted, we get from (33.90) GBy. Three mles
of inference are thereby established:

(a) Gop, a — NNB

(b) GaNp — N

(c) GaGRy — GBy
In the G-N-system every expression is either a variable, or a negation beginning w1th
N, or an implication beginning with G. If B is a variable, say p, we get by (a) from
Gap and « the conclusion NNp, and by substitution NNNp. As the principle of Duns
Scotus is admitted in our system, we obtain from CNNpCNNNpp by two detachments
p. Therefore, when B is a variable, the rule of detachment:

(d) Gap, & — B
is valid. It is plain, according to (b) and (c), that the same rule is valid too, when p is a
negation or an implication. Consequently the rule of detachment (d), like that for C, is
valid in all cases. The proof that the intuitionistic system contains the whole theory of
deduction as its proper part is thus completed.
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(E) Equivalence

34. The definition of equvalence

Equivalence is a conjunction of two implications which are converse to each other.
The most intuitive definition of equivalence is the following:

(34.1) COKCpqCqpaByEpg.

The new introduced term is E. Epg reads in words “p when and only when 4”, and
means the same as “(if p, then ¢) and (if 4, then p)”.

We also may define equivalence by our primitive terms, C and N, replacing K
according to the definition (30.1). This other definition is not so intuitive as the former
one, and runs:

(34.2) CONCCpgNCqpdEpg.

Together with the implication (34.1) is given its converse implication, as it was
explained in section 25:

(34.3) COEpqdKCpqCyp.

From (34.1) and (34.3) we now derive theses (34.5), (34.8) and (34.10) by help of the
premisses:

(11.1) CCpqCCqrCpr

(31.1) CKpgp

(31.2) CKpgq

(31.23) CCKpgrCpCqr

(34.1) 8/ *(34.4)
(34.4) CKCpqCqpEpq
(31.23) p/Cpg, g/ Cqp, v/ Epg * C(34.4)~(34.5)
(34.5) CCpgCCqpEpq
(34.3) 8/ * (34.6)
(34.6) CEpgKCpqCqp
(31.1) p/Cpq, q/Cqp * (34.7)
(34.7) CKCpqCqpCpq
(11.1) p/ Epq, 9/ KCpqCqp, r/ Cpg * C(34.6)-C(34.7)(34.8)
(34.8) CEpgCpg
(31.2) p/Cpq, q/Cqp * (34.9)
(34.9) CKCpqCqpCqp
(11.1) p/ Epg, 4/ KCpqCqp, r/ Cqp * C(34.6)-C(34.9)~(34.10)

(34.10) CEpqCayp.

Theses (34.5), (34.8) and (34.10) are deductively equivalent to the definition (34.1).
We shall see that by introducing variable functors and quantifiers into the theory
of deduction we shall be able to define the equivalence by the implication and the
universal quantifier without conjunction or negation.

Equivalence shares with the relation of identity and equality the properties of being
reflexive, symetric and transitive. The proof requires the following premisses:

(9.1) Cpp

(11.1) CCpgCCqrCpr

(11.4) CCpCqrCCsqCpCsr

(12.1) CCpCqrCqCpr

(13.1) CCpCqrCCpqCpr

(31.21) CCpCqrCKpgr
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(34.5) g/p * C(9.1)-C(9.1)34.11)
(34.11) Epp Equivalence is reflexive.

(34.5)p/q, q/p* (34.12)
(34.12) CCqpCCpqEqp

(11.1) p/ Epq, 4/ Cqp, r/ CCpgEqp * C(34.10)-C(34.12)-(34.13)
(34.13) CEpqCCpqEqp

(13.1) p/Epq, q/Cpq, v/ Eqp * C(34.13)-C(34.8)(34.14)
(34.14) CEpgEqp Equivalence is symmetric.

(11.1) p/ Epg, 4/ Cpq, v/ CCqrCpr * C(34.8)-C(11.1)—(34.15)
(34.15) CEpgCCqrCpr

(34.8) p/q, q/r* (34.16)
(34.16) CEqrCqr

(11.4) p/Epq, q/ Cqr, r/ Cpr, s/ Eqr * C(34.15)-C(34.16)-(34.17)
(34.17) CEpqCEqrCpr

(3417) p/r, r/p * (34.18)
(34.18) CErqCEqpCrp

(11.4) p/Erq, q/ Eqp, v/ Crp, s/ Epq * C(34.13)-C(34.14)-(34.19)
(34.19) CErgCEpgCrp

(34.14)p/q, q/r* (34.20)
(34.20) CEgrErg

(11.1) p/ Egr, q/ Erq, r/ CEpqCrp * C(34.20)-C(34.19)-(34.21)
(34.21) CEqrCEpqCrp

(12.1) p/Eqr, q/ Epq, r/ Crp ™ C(34.21)-(34.22)
(34.22) CEpgCEgrCrp

(31.21) p/Epg, 9/ Egr, r [ Crp * C(34.22)—(34.23)
(34.23) CKEpgEqrCrp

(31.21) p/Epq, q/ Eqr, r/ Cpr * C(34.17)—(34.24)
(34.24) CKEpqEqrCpr

(34.5) g/r * (34.25)
(34.25) CCprCCrpEpr

(11.1) p/ KEpgEqr, g/ Cpr, v/ CCrpEpr * C(34.24)-C(34.25)— (34 26)
(34.26) CKEpgEqrCCrpEpr

(13.1) p/ KEpqEqr, q/ Crp, r/ Epr * C(34.26)—C(34.25)-(34.27)
(34.27) CKEpgEqgrEpr

35. Some E-theses
A great number of implicational theses can be formulated as equivalences, for

instance the principle of commutation, of double negation or of transposition:

(35.1) ECpCqrCqCpr
(35.2) EpNNp
(35.3) ECpgCNgNp

The proofs are easy by applying thesis (34.5) to (12.1) and its substitution p/g, ¢/p in
the first case, to (20.1) and (20.2) in the second case, and two (21.1) and (21.4) with the
substitution p/q, 4/p in the third case. All these theses are of little importance, as for
proving new propositions we need implications, not equivalences. More interesting
are theses with the E in the middle, like the following one:

(35.4) NEpNp.
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According to this thesis no proposition is equivalent to its contradictory. The proof
requires eight theses as premisses:

(11.1) CCpgCCqrCpr

(19.1) CCNppp

(19.2) CCpNpNp

(21.1) CCpqCNgNp

(31.14) CCpqCCprCpKgr

(32.5) NKpNp

(34.8) CEpgCpq

(34.10) CEpgCqp

The proof:

(34.3) g/ Np * (35.5)
(35.5) CEpNpCpNp

(34.10) g/ Np * (35.6)
(35.6) CEpNpCNpp

(11.1) p/ EpNp, 9/ CpNp, r/ Np * C(35.5)-C(19.2)-(35.7)
(35.7) CEpNpNp

(11.1) p/ ErNp, ¢/ CNpp, r/ p * C(35.6)-C(19.1)~(35.8)
(35.8) CEpNpp

(31.14) p/EpNp, q/p, riNp * C(35.8)-C(35.7)(35.9)
(35.9) CEpNpKpNp

(21.1) p/ EpNp, q/KpNp * C(35.9)-C(32.1)~(35.4)

(35.4) NEpNp.

If we agree that it is absurd to assert the equivalence of two contradictory
propositions, we may call thesis (34.5) the principle of excluded absurdity. Most of the so
called “antinomies” are faulty arguments leading to an absurdity. Take for instance the
formulation of the famous antinomy of classes given in the Principia mathematica (Vol.
I, p. 63): “Let w be the class of all those classes which are not members of themselves.
Then, whatever class x may be, “xisaw” is equivalent to “x is not an x”. Hence, giving
to x the value w, “w is a w”" is equivalent to “w is not a w”.” The statements “w is a w”
and “w is not a w” are two contradictory propositions, their equivalence, therefore, is
an absurdity and must be rejected according to thesis (35.4). The argument leading to
this absurdity is faulty, because the definition of the class

“xis av” is equivalent to “yisnotanx”,
is wrong. According to Lesniewski expression is of the type “x is a w” can be defined
only under the condition that x is an object, and x is an object when and only when it is
true that “x is a x”. The right definition of the class w must therefore run:

“x is a w” is equivalent to “x is an x and x is not an x”, By giving to x the value w
get the formula:

“wis a w” is equivalent to “w is a w and w is not a w”, which simply means that
the proposition “w is a w” is false. The antinomy disappears and there is no need to
introduice in this case a theory of types.

The principle of excluded absurdity is in stronger sense stronger than the principle
of excluded contradiction. This can be seen by another E-thesis. From

(34.5) CCpqCCqpEpg

We get by the premisses:

(12.1) CCpCqrCqCpr
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(13.8) CCCqprCpr
(31.21) CCpCqrCKpqr
the following consequences:
(13.8) g/p, p/q, r/CCqpEpg * C(34.5)<(35.10)
(35.10) CqCCqpEpg
(12.1) p/4q, 9/ Cqp, r/ Epq *C(35.10)~(35.11)
(35.11) CCqpCqEpq
(13.8) r/ CqEpq * C(35.11)~(35.12)
(35.12) CpCqEpg
(31.31) r/ Epr * C(35.12)-(35.13)
(35.13) CKpgEpg.
From CKpqEpq follows by substitution CKpNpEpNp, and from this latter thesis by
transposition CNEpNpNKpNp. The principle of excluded contradiction can be thus
proved by the principle of excluded absurdity, but conversely the second principle
cannot be proved in a similar way by the first, because the converse implication to
(35.13), i.e. CEpqKpq, does not hold. This can be seen by the simplest matrices verifying
all N~ and E-theses: for p/2, q/2 we get by M,: CE22K22 = C12=2.

K 1 2.

1 1 2

2 2 2

E 1 2

1 1 z

2 2 1
M,

36. The E-system

The equivalence shares with the implication two important properties: (a) There
exists for E an analogous rule of detachment, as for C. (b) There exist theses in which E
occurs as the sole functor, whereas no thesis can be built up by A or K alone. These two
properties enable us to construct an E-system analogous to the C-system.

The rule of detachment for the E-system runs: If Eaf and « are asserted, then B
must be asserted too. It can be proved as follows: Let us suppose that Eap and « are
asserted:

[ Eap

IIa
we get from them by thesis:

(34.8) CEpqCpq

(34.8) p/[a], q/[p] * CI-CII-III

11 B.

The simplest E-thesis is the principle of identity:

(36.1) Epp,
which follows from Cpp by thesis (34.5). Another thesis is the principle of commutation
for E:

(36.2) EEpgEqp,
which easily can be proved by (34.14). The above two are the only theses cited in the
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Principia mathematica. 1 observed, however, about 30 years ago that equivalence is not
only reflexive and commutative, but also associative, because by the matrix M, given
in the preceding section the following thesis can be verified:
(36.3) EEEpqrEpEqr.
It was plain that the number of E—_theses is infinite and that they form a system which
should be axiomatized.
The first set of axioms for the E-system vas given by Lesniewski in 1929, It consisted
of the two following axioms:
(36.4) EEEprEqpErg
(36.5) EEpEqrEEpqr.
Leéniewski proved that all the E-theses can be deduced from these axioms by
substitution and detachment. Wajsberg discovered in 1932 simpler sets of axioms, and
among them two unique axioms, each containing 15 letters, on which the E-system
may be established. One of these unique axioms runs:
(36.6) EEEEpqrsEsEpEqr.
Some other unique axioms were later discovered by Sobocifiski and myself all
containing 15 letters, until I was able to show in 1933 that the E-system can be built up
on only one of the following three shortest axioms each containing 11 letters:
(36.7) EEpgEErqEpr
(36.8) EEpqEEprErg
(36.9) EEpqEErpEqr.
As what is called the “proof of completeness” is for the E-system the shortest one, I
shall give it in what follows, deducing first from thesis (36.7) all those consequences
which are required for the proof.
(36.7) EEpgEErqEpr
(36.7) p/ Epq, 4/ EErqEpr, rls ™ E(36.7)-(36.10)
(36.10) EESEErqEprEEpgs
(36.10) s/ Epq * E(36.7)~(36.11)
(36.11) EEpgEpq
(36.7)p/Epq, q/ Epg ™ E(36.11)-(36.12)
(36.12) EErEpgEEpqr
(36.12) v/ Epg, p/ Erq, q/ Epr * E(36.7)~(36.13)
(36.13) EEErgEprEpq
(36.11) g/p * (36.14)
(36.14) EEppEpp
(36.13) r/p, q/p * E(36.14)~(36.15)
(36.15) Epp .
(36.15) p/ q * (36.16)
(36.16) Eqq
(36.7) p/q, v/ p * E(36.16)-(36.17)
(36.17) EEpqEqp
(36.7) p/ Epq, 9/ Eqp * E(36.17)-(36.18)
(36.18) EErEqpEEpgr
(36.17) p/ ErEqp, q/ EEpgr * E£(36.18)-(36.19)
(36.19) EEEpgrErEqp
(36.19) q/r, r/Epg* (36.20)
(36.20) EEEprEpqEEpqErp
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(36.10) s/ EEprEpqg, r/ p, p/r* E(36.20)—(36.21)
(36.21) EErqEEprEpq

(36.21) r/ Epg * (36.)
(36.22) EEEpgqEEpEpgEpq

(36.13) r/ Epq, p/ EpEpq * E(36.22)—(36.23)
(36.23) EEpEpgq

(36.17) p/ EpEpq * E(36.23)—(36.24)
(36.24) EqEpEpq

(36.7) p/ EpEpq * E(36.23)-(36.25)
(36.25) EErgEEpEpgr

(36.25) r/Epg, q/7,p/q * (36.26)
(36.26) EEEpgrEEqEqrEpg

(36.10) s/ EEpqr, /g, q/ Eqr * E(36.26)—(36.27)
(36.27) EEpEqrEEpqr (36.5)

(36.17) p/ EpEqr, q/ EEpgr * E(36.27)—(36.28)
(36.28) EEEpqrEpEgr

(36.27) p/Epg, v/ p * E(36.17)~(36.29)
(36.29) EEEpgqp

(36.19) p/r, r/p™* (36.30)
(36.30) EEErgpEpEqr

(36.19) p/Erg, q/p, r/ EpEgr * E(36.30)—(36.31)
(36.31) EEpEqrEpErq

(36.13)r/p, q/r, p/q* (36.32)
(36.32) EEEprEqpEqr

(36.31) p/ EEprEgp * E(36.32)-(36.33)
(36.33) EEEprEqpErg (36.4)

(36.31) p/ EEpqr, q/r, r/ Eqp * E(36.19)—(36.34)
(36.34) EEEpgqrEEqpr

(36.34) p/q. q/r, r/s* (36.35)

Notes

" In the typescript, the title of this section is: “Part I. Theory of Deduction. Chapter I. A Survey of Theses”
, [AB&]]].
.In fact, this exposition does not exist [AB&]J]].
" In the typescript, the formula (33.35) /NNy, ¢/NNKpq * C(33.37)~(33.40)" was inserted by Lukasiewicz under
this line [AB&]J]].



